跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳文華
研究生(外文):Chen, Wen-Hua
論文名稱:矽奈米結構太陽能電池元件之製作與光電效率之改善
論文名稱(外文):The Fabrication and Efficiency Improvement of Multi-crystalline Silicon Solar Cell with Nanostructures
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Hong, Chau-Nan
口試委員:許聯崇陳進成呂英治鍾宜璋
口試委員(外文):Lien-Chung HsuJin-Cheng Chen
口試日期:2016-11-25
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:190
中文關鍵詞:奈米結構抗反射反應性離子蝕刻太陽能電池
外文關鍵詞:NanostructureAnti-reflectionReactive ion etchingSolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在太陽能電池的應用上,氮化矽薄膜為一常用的抗反射層及鈍化層材料,但其只在特定頻寬有較佳抗反射效果。因此我們發展一種簡單的製程,在矽基板上製作次波長結構,期望能達到寬頻抗反射的效果,以增加太陽能電池對光的吸收。
在第一部分之研究中,我們具焦在反應性離子蝕刻的製程參數研究。我們利用六氟化硫與氯氣電漿對矽進行蝕刻,以通入之氧氣而形成之二氧化矽遮罩,利用此一天然遮罩進行矽蝕刻則可得到奈米尖錐狀結構。我們發現不同比例的蝕刻氣體環境下,會導致抗反射結構之變化。我們藉由一系列之參數調整並將其應用於矽太陽能電池中以期得到最佳之效率改善。其中最佳的奈米尖錐抗反射結構為高度為350–450nm,並使得波長350–850nm之有效反射率下降到小於2%,達到寬頻抗反射的效果。
在第二部分中,本研究著重於探討在具矽奈米尖錐之太陽能電池的製程中,所有的製程參數之研究。其中包含: (1)探討開始進行奈米尖錐蝕刻前之基板表面狀態,本研究在使用不同之溶液進行表面微結構之產生,我們發現可以發現這些微結構對於後來之奈米尖錐之形成與效率之影響有其顯著之影響,我們利用QSSPC進行表面性質之分析。由QSSPC分析可知,使用酸性溶液( HF + HNO3) 在開始進行蝕刻前處理異於使用鹼性溶液(KOH) 之前處理,其對於效率也有所不同之影響。(2)為探討蝕刻奈米尖錐所造成之電漿破壞層對於效率之影響,本研究藉由氫氧化鉀(KOH)進行濕式蝕刻,並發現蝕刻後之矽奈米尖錐高度大幅縮減,然其底部寬度與蝕刻前並無明顯差異。藉由此一處理可將此破壞層消除進而達到效率之改善。實驗結果證實本研究蝕刻奈米尖錐所形成之電漿破壞層對於效率亦有決定性之影響。(3)本研究中亦探討由於表面結構之改變其對射極層之電阻最佳值的變化,我們發現由於表面結構之改變我們可以提高射極層之電阻值進而提高太陽能電池之效率改善。綜合來說,本論文針對奈米尖錐其應用在太陽能電池所遇到之問題,提出可行解決之方法。並對於未來將此技術朝向大量生產以及獲得高穩定性之太陽能電池之製造提供一可行方向。
This research is involving of two parts. First part is that the fabrication of Si nanostructures by reactive ion etching. Si nanostructures with a mount of shapes were fabrication as different gas reactant ratio. Besides the nanoscale features, the high density of nanostructures formed on the multi-crystalline Si surface was also required to significantly reduce the reflectivity. A low reflectivity surface was successfully fabricated with the average reflectivity significantly reduced down to <2% for the wavelength range of 300-850 nm. Other part is the device fabrication. The short wavelength spectral response (blue response) improvement is observed in RIE textured solar cells compared to the standard textured cells. The RIE textured surfaces in combination with optimized emitter resistance result in a remarkable enhancement of short circuit current density. Compared with the acidic textured solar cells, the absolute conversion efficiency of the alkaline + RIE textured cells was improved over 0.5% in average
目錄

中文摘要……………………………………………………………………I
英文摘要………………………………………………………………III
誌謝………………………………………………………………………VIII
目錄………………………………………………………………………………X
表目錄………………………………………………………………………XVI
圖目錄…………………………………………………………………XVIII
第一章 緒論……………………………………………………………………………1
1-1 前言…………………………………………………………………………………1
1-2太陽能電池的介紹與發展現況目錄……………………………5
1-2-1結晶矽太陽能電池………………………………………………………9
1-2-2薄膜型太陽能電池……………………………………………………11
1-2-3有機太陽能電池…………………………………………………………11
1-2-3異質接面太陽能電池…………………………………………………13
1-3 研究動機…………………………………………………………………………14
第二章 理論基礎與文獻回顧………………………………………………16
2-1矽的結構與特性………………………………………………………………16
2-1-1矽的基本性質………………………………………………………………16
2-1-2矽的晶體結構………………………………………………………………17
2-1-3矽的能帶結構………………………………………………………………18
2-1-4矽的電性………………………………………………………………………19
2-2太陽能電池之理論基礎…………………………………………………20
2-2-1太陽光譜………………………………………………………………………21
2-2-2太陽能電池的工作原理……………………………………………23
2-2-3太陽能電池的量測與效率計算………………………………28
2-2-4太陽能電池的等效電路……………………………………………30
2-2-5太陽能電池的溫度效應……………………………………………34
2-2-6太陽能電池的量子效率……………………………………………37
2-2-7結晶矽太陽能電池的研究方向………………………………39
2-3電漿理論………………………………………49
2-3-1電漿定義與特性………………………………………49
2-3-2電漿顏色………………………………………55
2-3-3電漿蝕刻………………………………………56
2-4表面結構應用於太陽能電池…………………………………………………60
2-4-1次波長結構的基本性質…………………………………………………62
2-4-2次波長結構製作之文獻回顧…………………………………………………66
第三章 實驗步驟與方法…………………………………………………80
3-1實驗流程…………………………………………………80
3-2實驗設備…………………………………………………81
3-2-1反應性離子蝕刻系統…………………………………………………81
3-2-2抽氣及真空系統…………………………………………………82
3-2-3氣體輸送裝置…………………………………………………83
3-2-4反應腔內壓力量測系統…………………………………………………83
3-2-4-1Baratron Gauge…………………………………………………83
3-2-4-2Convectron Gauge…………………………………………………83
3-2-5氣體流量控制系統…………………………………………………84
3-2-6化學氣相沉積系統…………………………………………………85
3-2-7化學氣相摻雜系統…………………………………………………86
3-3實驗材料…………………………………………………88
3-3-1實驗氣體…………………………………………………88
3-3-2矽基板材料…………………………………………………89
3-3-3真空管件材料…………………………………………………89
3-3-5化學藥品…………………………………………………90
3-4實驗步驟…………………………………………………91
3-4-1製作矽太陽能電池流程…………………………………………………91
3-4-2矽基板的前處理…………………………………………………92
3-4-3以反應式離子蝕刻形成奈米尖錐之結構…………………………………93
3-4-4 移除矽蝕刻反應所造成之表面破壞層……………………………………94
3-4-5氧化磷(P2O5)預沉積及磷驅入(drive-in)程序………………94
3-4-6矽表面磷玻璃之移除與邊緣防止導通的絕緣處理…………………96
3-4-7正面抗反射膜之成長………………………………………97
3-4-8 網版電極之印刷………………………………………97
3-5實驗分析………………………………………99
3-5-1 掃描式電子顯微鏡………………………………………99
3-5-2 能量散佈分析儀(EDS or EDX)………………………………………100
3-5-3紫外光/可見光光譜儀(UV/Visible Spectrophotometer)……101
3-5-4 載子壽命量測儀(QSSPC)………………………………………101
3-5-5太陽光模擬器電流/電壓量測(I-V)系統………………………………………105
3-5-6四點探針(Four-point Probe)………………………………………105
3-5-7二次電子質譜儀量測系統(SIMS)………………………………………106
3-5-7光學薄膜測厚儀(Ellipsometer)………………………………………108
3-5-7光譜響應/量子效率量測系統………………………………………109
3-5-8光電流轉換效率量測系統……………………………………… 110
第四章 結果與討論………………………………………111
4-1 基板前處理效應之探討………………………………………111
4-1-1表面結構之分析………………………………………112
4-1-2光學特性之分析………………………………………116
4-1-3電性特性之分析………………………………………119
4-1-4太陽能電池元件之分析………………………………………123
4-1-5章節結語………………………………………126
4-2電漿蝕刻參數對形成奈米結構之探討………………………………………127
4-2-1探討電漿功率對形成奈米尖錐與光電性質之影響 …………………………127
4-2-2探討電漿製程時間對形成奈米尖錐與光電性質之影響…………………131
4-2-3探討Cl2流量對形成奈米尖錐與光電性質之影響……………………………135
4-2-4探討SF6流量對形成奈米尖錐與光電性質之影響 ……………………139
4-2-5探討Cl2 /O2/SF6流量對形成奈米尖錐與光電性質之影響 ………144
4-2-6章節結語………………………………………153
4-3電漿蝕刻後處理之探討 154
4-3-1探討使用KOH製程對奈米尖錐與光電性質之影響…………………154
4-3-3章節結語………………………………………164
4-4奈米結構對射極阻值之探討………………………………………165
4-3-1探討磷驅入時間對具有奈米尖錐之太陽能電池的影響…………165
4-3-2章節結語………………………………………172
第五章 結論與未來展望………………………………………173
5-1矽奈米尖錐的製備………………………………………174
5-2具奈米結構之太陽能電池製程的最佳化及量測…………………………174
5-2-1矽基板前處理及其對元件製作之影響………………………………………175
5-2-2電漿蝕刻後處理及其對元件製作之影響…………………………………175
5-2-3射極阻值對具矽奈米結構之太陽能電池的影響………………………176
5-3未來改善矽奈米尖錐太陽能電池的建議方向………………………………176
5-3-1矽奈米尖錐的表面鈍化處理………………………………………176
5-3-2 N型磷原子驅入(drive-in)深度最適化控制……………………177
5-3-3改善接觸電極製作………………………………………177
參考文獻………………………………………178
[1]高文芳, ”量子力學的發跡與遠景”, 交大物理所, 2003年3月
[2]http://www.zyvex.com/nanotech/feynman.html
[3]D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature, 344, 524-526 (1990)
[4]M. F. Crommie, C. P. Lutz, and D. M. Eigler, Confinement of electrons to quantum corrals on a metal surface, Science, 262, 218-220 (1993)
[5]S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991)
[6]C. V. Nguyen, C. So, R. M. Stevens, Y. Li, L. Delziet, P. Sarrazin, and M. Meyyappan, High Lateral Resolution Imaging with Sharpened Tip of Multi-Walled Carbon Nanotube Scanning Probe, J. Phys. Chem. B, 108, 2816-2822 (2004)
[7]唐元洪, “矽奈米線及矽奈米管”, 化學工業出版社, 2006年10月
[8]http://zh.wikipedia.org/zh-hant/
[9]D. M. Chapin, C. S. Fuller, G. L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 25, 676-680 (1954)
[10]Zhao, A. Wang, M. A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution, Prog. Photovolt. Res. Appl.,7, 471-476 (1999)
[11]G. Conibeer, Materials Today,10, 42 (2007)
[12]http://www.nrel.gov/, National Renewable Energy Laboratory website
[13]Martin A. Green, Crystalline and thin-film silicon solar cells: state of the art and future potential, Solar Energy, 74, 181-192 (2003)
[14]J. Yang, A. Banerjee, T. Glatfelter, S. Sugiyama, and S. Guha, Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency, in Photovoltaic Specialists Conference, 563-568(1997)
[15]C. W. Tang and A. C. Albrecht, Chlorophyll-a photovoltaic cells, Nature 254, 507-509 (1975)
[16]H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics, 3, 649-653 (2009)
[17]Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater. 22, E135-E138 (2010)
[18]Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells, Adv. Mater. 23, 4636-4643 (2011)
[19]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, 131, 6050-6051( 2009)
[20]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. C. Ryu, J. W. Seo, and S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234-1237 (2015)
[21]http://panasonic.co.jp/, Panasonic corporation website
[22]E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, S. Zhang and A. Cao, TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%”, Sci. Rep. 2, 884 (2012)
[23]Y. Jung, X. Li, N. K. Rajan, André D. Taylor, and Mark A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells, Nano Lett.13, 95-99 (2013)
[24]J. Di , Z. Yong , X. Zheng , B. Sun , and Q. Li, Aligned carbon nanotubes for high-efficiency schottky solar cells, small, 9, 1367-1372 (2013)
[25]C. S, M. F. Schubert, J. K. Kim, E. F. Schubert, Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics, Applied Physics Letters. 93, 251108-3 (2008)
[26]Y. M. Song, S. Y. Bae, J. S. Yu, Y. T. Lee. Closely packed and aspect-ratio- controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer, Opt Lett., 34, 1702-1704 (2009)
[27]P. Lalanne, G. M. Morris, Antireflection behavior of silicon sub wavelength periodic structures for visible light, Nanotechnology, 40, 53-56 (1997)
[28]Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. Journal of Vacuum Science & Technology B, 21, 2874-2877 (2003)
[29]K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang, et al., Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application. Nanoscale Research Letters., 4, 680-683 (2009)
[30]W. H. Southwell, Gradient-index antireflection coatings, Opt. Lett., 8, 584-586 (1983)
[31]楊德仁, “太陽能電池材料”, 五南圖書出版社, 2008年6月
[32]顏秀崗, “材料科學與工程”, 全華科技圖書出版社, 1990 年12月
[33]龔吉合、潘德華、楊希文、傅承祖、施並裕、丁原傑, “材料科學導論”, 滄海書局出版社, 1998年8月
[34]李世鴻, “半導體物理及元件”, 台商圖書出版社, 2005年2月
[35]J. Neison, The Physics of Solar Cells, Imperial College Press, 1-2
[36]http://www.pveducation.org/pvcdrom/ , PV Education ORG
[37]楊素華、蔡泰成,“太陽光能發電元件” , 科學發展, 390期, 53 (2005)
[38]H. Scheel1, S. Khachadorian, M. Cantoro, A. Colli, A. C. Ferrari, and C. Thomsen1, Phys. Stat. Sol. B, 245, 2090 (2008)
[39]B. Li, D. Yu, and S. L. Zhang, PHYSICAL REVIEW B, 59, 1645 (1999)
[40]T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, J. Phys. Chem. C, 111, 15160 (2007)
[41]蔡進譯, “物理雙月刊”, 27卷5期, 701 (2005)
[42]黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳, “太陽能電池” , 五南圖書出版股份有限公司
[43]S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Anti-reflecting and photonic nanostructures, Mat Sci Eng R, 69, 1-35 (2010)
[44]G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. D. Wolf , and G. Beaucarne, Solar Energy Materials and Solar Cells, 90, 3438 (2006)
[45]B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden and W. M. M. Kessels, Applied Physics Letters, 89, 042112 (2006)
[46]J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institute of Physics. Bristol and Philadelphia: Institute of Physics Publishing, 1995
[47]Y. Saito, T. Yoshikawa, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, J. Cryst. Growth, 134, 154-156, (1993)
[48]Y. B. Dorfaman, M. Abraizov, Fred H. Pollak, D. Yan, M. Strongin, X. Q. Yang, and Z. Y. Rong, Mat. Res. Soc. Symp. Proc. 349, 547 (1994)
[49]S. Vepřek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films, 268, 64-71 (1995)
[50]E. Osawa, M. Yoshida, M. Fujita, MRS Bull., 33(1994)
[51]C. G. Bernhard and W. H. Miller, A corneal nipple pattern in insect compound eyes, Acta Physiol. Scand. 56, 385 (1962)
[52]D. G. Stavenga1, S. Foletti1, G. Palasantzas and K. Arikawa, Light on the moth-eye corneal nipple array of butterflies, Proc. R. Soc. B, 273, 661-667 (2006)
[53]D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings conical diffraction and antireflection designs, Applied Optics., 33, 2695(1994)
[54]E. B. Grann, M. G. Moharam, D. A. Pommet, Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings, J B, Opt Soc Am A., 11, 2695-2703 (1994)
[55]S. J. Wilson, M. C. Hutley, The optical-properties of moth eye antireflection surfaces, Optica Acta. , 29, 993-1009 (1982).
[56]J. Zhao, A. Wang, Martin A. Green, and F. Ferrazza, 19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl. Phys. Lett. 73, 1991 (1998)
[57]W. C. Cheng, L. A. Wang, Phase masks working in 157 nm wavelength fabricated by immersion interference photolithography, Journal of Vacuum Science Technology B., 21, 3078-3081 (2003)
[58]M. Ben Rabha, S. B. Mohamed, W. Dimassi, M. Gaidi, H. Ezzaouia, B. Bessais, Reduction of absorption loss in multicrystalline silicon via combination of mechanical grooving and porous silicon, Phys. Status Solidi (C) , 8, 883-886 (2011)
[59]H. Nouri, M. Bouaicha, B. Bessais., Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure, Sol. Energy Mater. Sol. Cells, 93, 1823-1826 (2009)
[60]H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, et al., Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks, Applied Physics Letters, 20, 88-91 (2006)
[61]C. M. Hsu, S. T. Connor, M. X. Tang, Y. Cui, Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Applied Physics Letters, 13, 93-96 (2008)
[62]Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H.C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, ” Nanotechnology, 2, 770-774 (2007)
[63]V. V. Iyengar, B. K. Nayak, K. L. More, H. M.MeyerIII, M. D. Biegalski, J. V. Li, M. C. Gupta, Properties of ultrafast laser textured silicon for photovoltaics, Sol. Energy Mater. Sol. Cells, 10, 2745-2751 (2011)
[64]M. B. Rabha, W. Dimassi, M. Bouaïcha, H. Ezzaouia, B. Bessais., Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells, Solar Energy, 83, 721 (2009)
[65]B. K. Nayak, V. V. Iyengar, M. C. Gupta, Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled icro/nanostructures , Progress in Photovoltaics: Research and Applications, 10, 1002-1072, (2011)
[66]B. K. Nayak, M. C. Gupta, Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H, Applied Physics A: Materials Science and Processing, 89, 663–666 (2007)
[67]T. H. Her, R. J. Finlay, C. Wu, E. Mazur, Femtosecond laser-induced formation of spikes on silicon, Applied Physics A: Materials Science and Processing, 70 , 383-385 (2000)
[68]J. C. Zolper, S. Narayanan, S. R. Wenham, M. A. Green, 16.7-Percent efficient laser textured, buried contact polycrystalline silicon solar-cell, Applied Physics Letters, 55 ,2363–2365 (1989)
[69]Y. Inomata, K. Fukui, K. Shirasawa, Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method, Sol. Energy Mater. Sol. Cells, 48, 237-242 (1997)
[70]C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, et al. Generally applicable self-masked dry etching technique for nanotip array fabrication Nano Letters, 4, 471-475 (2004)
[71]K. S. Lee, M. H. Ha, J. H. Kim and J. W. Jeong, Damage free reactive ion etch for high efficiency large area multicrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 95, 66-68 (2011)
[72]S. Liu, X. Niu, Wei Shan, W. Liu, J. Aheng, Y. Li, H. Duan, W. Quan, W. Han, C.R. Wronski, Deren Yang, Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing, Sol. Energy Mater. Sol. Cells, 127, 21-26 (2014) 21-26
[73]Z. Yue, H. Shen, Y. Jiang, Antireflective nanostructures fabricated by reactive ion etching method on pyramid-structured silicon surface, Appl. Surf. Sci., 271, 402-406 (2013)
[74]S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, Z. Xu, C. Li, Influence of the texturing structure on the properties of black silicon solar cell, Sol. Energy Mater. Sol. Cells, 108, 200–204 (2013)
[75]H. H. Lin, W. H. Chen, C. J. Wang, Franklin C. N. Honga, Fabrication of antireflective nanostructures for crystalline silicon solar cells by reactive ion etching, Thin Solid Films, 529, 138–142 (2013)
[76]J. Yoo, G. Yu, J. Yi, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater. Sol. Cells, 95, 2–6 (2011)
[77]J. U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, J. Yi, Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication, Sol. Energy Mater. Sol. Cells, 91, 285–289 (2007)
[78]D. S. Ruby, S. Zaidi, S. Narayanan, S. Yamanaka, R. Balanga, RIE-Texturing of industrial multicrystalline silicon solar cells, J. Sol. Energy Eng., 127, 146-149 (2005)
[79]W. A. Nositschka, C. Beneking, O. Voigt, H. Kurz, Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks, Sol. Energy Mater. Sol. Cells, 76, 155-166 (2003)
[80]Y. Xia, B. Liu, et al., A novel method to produce black silicon for solar cells, Solar Energy, 85 , 1574-1578 (2011)
[81]B. T. Chan, E. Kunnen, M. Uhlig, J. F. de Marneffe, K. D. Xu, W. Boullart, B. Rau, Implementing plasma texturing process with linear microwave plasma sources for ultra-thin multi-crystalline (150 μm) solar cells, Jpn. J. Appl. Phys. 51 , 10NA01 (2012)
[82]D. G. Choi, H. K. Yu, S. G. Jang, S. M. Yang, Colloidal Lithographic Nano-patterning via Reactive Ion Etching, J. Am. Chem. Soc., 126, 7019-7023 (2004)
[83]H. F. W. Dekkers, F. Duerinckx, J. Szlufcik, J. Nijs, Silicon surface etching by reactive ion etching, Opto-elec. Rev., 8311–316 (2000)
[84]R. S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M. S. Schmidt, A. Boisen, O. Hansen, S. Wenham, A. Barnett, Black silicon laser-doped selective emitter solar cell with 18.1% efficiency, Sol. Energy Mater. Sol. Cells, 144, 740-747 (2016)
[85]F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency, Sol. Energy Mater. Sol. Cells, 141, 132-138 (2015)
[86]K. M. Park, M. B. Lee, S. Y. Choi, Investigation of surface features for 17.2% efficiency multi-crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 132, 356-362 (2015)
[87]G. Kumaravelu, M. M. Alkaisi, D. Macdonald, J. Zhao, B. Rong, A. Bittar, Minority carrier lifetime in plasma-textured silicon wafers for solar cells, Sol. Energy Mater. Sol. Cells, 87, 99-106 (2005)
[88]W. A. Nositschka, O. Voigt, P. Manshanden, H. Kurz, Texturisation of multicrystalline silicon solar cells by RIE and plasma etching, Sol. Energy Mater. Sol. Cells, 2, 227-237 (2003)
[89]D. S Ruby, S. H Zaidi, S Narayanan, B. M Damiani, A Rohatgi, Rie-texturing of multicrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 74, 133-137 (2002)
[90]S. Winderbaum, O. Reinhold, F. Yun, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 46, 239-248 (1997)
[91]http://mksinst.mobi/Docs/UR/gbror.pdf , MKS Instruments Catalog
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊