跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅敬翔
研究生(外文):Lo, Ching-Hsiang
論文名稱:鈉及鈦摻雜SiO2複合粉體之製備及濕度感測性質研究
論文名稱(外文):Preparation and humidity sensing properties of SiO2 composite powder doped with TiO2 and sodium salts
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Hwang, Chii-Shyang
口試委員:洪茂峰吳南均陳嘉勻
口試委員(外文):Mau-Phon HoungNan-Chung WuChia-Yun Chen
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:濕度感測器二氧化矽二氧化鈦草酸鈉金屬鹽類
外文關鍵詞:Humidity sensorSiO2TiO2Oxalic acidSodium salts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
濕度感測器為一種能感測環境當中水分含量多寡之元件,利用水分子在材料表面吸附和脫附過程中,造成不同物理或化學性質之變化,並換算得知濕度之高低。一般而言,好的濕度感測器須具備靈敏度佳、反應時間短、感測範圍大、遲滯現象小、性質穩定、可長時間使用等性質。於眾多濕度感測材料中,SiO2具有穩定度高、無污染、抗腐蝕且可於商業上大量製造等特點,而被廣為研究。此SiO2材料多數使用溶膠凝膠法(sol-gel)進行合成,此方法之缺點為反應時間過長,約需數十小時至數天之時間,且常須經由煆燒之步驟,浪費許多時間及能源,其在低濕度之感測上,靈敏性較差,可感測範圍窄。因此,SiO2材料之合成方式之改善及濕度感測性質之提升,成為值得研究的方向。
本研究以SiO2為主成分製成濕度感測材料,藉由添加不同比例之偏鈦酸以形成TiO2摻雜於SiO2材料中,並與添加草酸及不同含量鈉金屬鹽類(檸檬酸鈉及氯化鈉)之試樣比較,探討其表面形貌、化學結構、親疏水性、濕度感測等性質之差異。研究結果顯示,不同Si:Ti配比之粉體可以溶液法在室溫下合成而得,其合成反應時間短,粒徑大小約為100~200 nm,其主成分為非晶相之SiO2,添加草酸之試樣也可由FT-IR證實其存在,且草酸之添加可提升粉體之親水性。
在濕度感測性質方面,以添加草酸之Si:Ti = 1:1配比再添加4 mol% 檸檬酸鈉或1 mol% 氯化鈉之兩組試樣具有較佳性質表現,在不同相對濕度下其阻抗值變化可達4個數量級,並具有高的靈敏性,反應及回復時間分別約為10, 8秒及25, 22秒,且兩試樣皆呈現小的遲滯現象,約為3%左右,在高低濕度循環測試及長時間量測下,阻抗值皆無明顯受到改變,證實其具有良好的重複性及穩定性。因此,本研究所合成之材料具有可應用於商業濕度感測器之潛力。
In this study, we report a facile synthesis of SiO2/TiO2 nanocomposite with different Si and Ti ratio for detecting relative humidity at room temperature. Oxalic acid and sodium salts were added into nanopowders using solvent reaction processes and no heat treatment. In comparison with pure SiO2/TiO2, the composite powders with the addition of oxalic acid and sodium salts showed the better humidity sensing properties within the range of 11% ~ 95% RH. The optimal results were obtained for Si:Ti = 1:1 + 4 mol% NaCA sample and Si:Ti = 1:1 + 1 mol% NaCl sample, which demonstrated an excellent linearity, small hysteresis and high humidity sensitivity; moreover, it also exhibited short response and recovery time. The impedance showed the change of about 4 orders in magnitude over the entire humidity range. The results indicate that the SiO2/TiO2 nanocomposite is promising as application of humidity sensor.
中文摘要 I
英文延伸摘要 II
誌謝 VIII
目錄 XI
表目錄 XIII
圖目錄 XIV
第1章 緒論 1
1-1 前言 1
1-2 研究動機、目的及策略 4
第2章 基礎理論與文獻回顧 5
2-1 濕度感測器之要件 5
2-2 濕度感測器之種類 6
2-2-1 電阻式濕度感測器 6
2-2-2 電容式濕度感測器 8
2-2-3 光學式濕度感測器 10
2-2-4 重量式濕度感測器 11
2-3 電阻式濕度感測器感測機制 17
2-4 SiO2及TiO2複合物製備及其應用 21
2-4-1 SiO2及TiO2之基本性質 21
2-4-2 SiO2及TiO2之製備方法 21
2-4-3 SiO2及TiO2之應用 23
2-5 濕度感測器相關研究動態 26
2-5-1 SiO2電阻式濕度感測器 26
2-5-2 TiO2電阻式濕度感測器 29
2-5-3 添加鹼金屬鹽類之濕度感測器 31
第3章 實驗方法與步驟 41
3-1 實驗用藥品及原料 41
3-2 實驗流程 42
3-3 材料性質之分析 44
3-3-1 相鑑定分析 44
3-3-2 顯微結構之分析 44
3-3-3 元素分析 44
3-3-4 化學結構分析 45
3-4 濕度感測性質之分析 45
3-4-1 濕度感測器製作 45
3-4-2 濕度感測性質量測 47
第4章 結果與討論 49
4-1 粉體性質分析 49
4-1-1 粉體表面形貌及元素分析 49
4-1-2 粉體相鑑定分析 51
4-1-3 粉體化學結構分析 51
4-1-4 粉體親疏水性分析 52
4-2 濕度感測性質分析 60
4-2-1 濕度感測之阻抗值變化與靈敏性 60
4-2-2 濕度感測之反應及回復時間 61
4-2-3 濕度感測之遲滯現象 62
4-2-4 濕度感測之重複性及穩定性 62
4-2-5 濕度感測機制 63
第5章 結論 72
參考文獻 73
[1]鍾秀瑩, 聚氧化乙烯濕度感測器之研究, 成大材料科學及工程研究所碩士論文, 13 (2001).
[2]T. Hübert, Humidity-sensing materials, MRS Bulletin, 24, 49-54 (1999).
[3]Q. Yuan, N. Li, J. Tu, X. Li, R. Wang, T. Zhang, C. Shao, Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite, Sensors and Actuators B: Chemical, 149, 413-419 (2010).
[4]V.K. Tomer, S. Duhan, In-situ synthesis of SnO2/SBA-15 hybrid nanocomposite as highly efficient humidity sensor, Sensors and Actuators B: Chemical, 212, 517-525 (2015).
[5]W. Zhang, R. Wang, Q. Zhang, J. Li, Humidity sensitive properties of K-doped mesoporous silica SBA-15, Journal of Physics and Chemistry of Solids, 73, 517-522 (2012).
[6]X. He, W. Geng, B. Zhang, L. Jia, L. Duan, Q. Zhang, Ultrahigh humidity sensitivity of NaCl-added 3D mesoporous silica KIT-6 and its sensing mechanism, RSC Adv., 6, 38391-38398 (2016).
[7]N. Yamazoe, Humidity sensors Principles and applications, Sensors and Actuators, 10, 379-398 (1986).
[8]P.-G. Su, C.-S. Wang, In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor, Sensors and Actuators B: Chemical, 124, 303-308 (2007).
[9]M.-S. Gong, J.-U. Kim, J.-G. Kim, Preparation of water-durable humidity sensor by attachment of polyelectrolyte membrane to electrode substrate by photochemical crosslinking reaction, Sensors and Actuators B: Chemical, 147, 539-547 (2010).
[10]P.-G. Su, C.-S. Wang, Novel flexible resistive-type humidity sensor, Sensors and Actuators B: Chemical, 123, 1071-1076 (2007).
[11]M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method, Materials Science and Engineering: C, 31, 840-844 (2011).
[12]M. Anbia, S.E.M. Fard, Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method, Journal of Rare Earths, 30, 38-42 (2012).
[13]Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, J. Zhao, Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning, Sensors and Actuators B: Chemical, 146, 98-102 (2010).
[14]B. Cheng, B. Tian, C. Xie, Y. Xiao, S. Lei, Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes, J. Mater. Chem., 21, 1907-1912 (2011).
[15]R.K. Kotnala, J. Shah, B. Singh, H. kishan, S. Singh, S.K. Dhawan, A. Sengupta, Humidity response of Li-substituted magnesium ferrite, Sensors and Actuators B: Chemical, 129, 909-914 (2008).
[16]Z.M. Rittersma, Recent achievements in miniaturised humidity sensors - a review of transduction techniques, Sensors and Actuators A: Physical, 96, 196-210 (2002).
[17]C. H. Chen, C. H. Lin, A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing, Sensors and Actuators B: Chemical, 135, 276-282 (2008).
[18]W. Yao, X. Chen, J. Zhang, A capacitive humidity sensor based on gold–PVA core–shell nanocomposites, Sensors and Actuators B: Chemical, 145, 327-333 (2010).
[19]Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide, Sensors and Actuators B: Chemical, 141, 441-446 (2009).
[20]C.K. Chung, O.K. Khor, C.J. Syu, S.W. Chen, Effect of oxalic acid concentration on the magnetically enhanced capacitance and resistance of AAO humidity sensor, Sensors and Actuators B: Chemical, 210, 69-74 (2015).
[21]H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T.C. Chiles, M.J. Naughton, D. Cai, Ultrasensitive Chemical Detection Using a Nanocoax Sensor, ACS Nano, 6, 3171-3178 (2012).
[22]T. Wagner, S. Krotzky, A. Weiss, T. Sauerwald, C.D. Kohl, J. Roggenbuck, M. Tiemann, A high temperature capacitive humidity sensor based on mesoporous silica, Sensors (Basel), 11, 3135-3144 (2011).
[23]M. Bedoyaa, G. Orellanab, M.C. Moreno-Bondi, Fluorescent Optosensor for Humidity Measurements in Air, Helvetica Chimica Acta, 84, 2628-2639 (2001).
[24]M.V. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldar, R.C. Aiyer, Evaluation of co-polyaniline nanocomposite thin films as humidity sensor, Talanta, 76, 1035-1040 (2008).
[25]C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, L. Tong, Quantum-dot-doped polymer nanofibers for optical sensing, Adv Mater, 23, 3770-3774 (2011).
[26]X. Wang, B. Ding, J. Yu, M. Wang, F. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance, Nanotechnology, 21, 055502 (2010).
[27]H.-S. Hong, G.-S. Chung, Humidity sensing characteristics of Ga-doped zinc oxide film grown on a polycrystalline AlN thin film based on a surface acoustic wave, Sensors and Actuators B: Chemical, 150, 681-685 (2010).
[28]L. Sheng, C. Dajing, C. Yuquan, A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films, Nanotechnology, 22, 265504 (2011).
[29]Z. Chen, C. Lu, Humidity Sensors: A Review of Materials and Mechanisms, Sensor Letters, 3, 274-295 (2005).
[30]彭永福, 以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料, 國立中山大學光電工程學系 碩士論文, 12-20 (2009).
[31]G.S. Vicente, A. Morales, N. Germa´n, S. Suarez, B. Sa´nchez, SiO2-TiO2 Antireflective Coatings With Photocatalytic Properties Prepared by Sol–Gel for Solar Glass Covers, Journal of Solar Energy Engineering, 134, (2012).
[32]C. Kapridaki, P. Maravelaki-Kalaitzaki, TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection, Progress in Organic Coatings, 76, 400-410 (2013).
[33]S.H. Hwang, D.H. Shin, J. Yun, C. Kim, M. Choi, J. Jang, SiO2/TiO2 hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dye-sensitized solar cells, Chemistry, 20, 4439-4446 (2014).
[34]Y. Li, C.-Y. Wi, Role of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury on a SiO2−TiO2 Nanocomposite, Environmental Science & Technology, 40, 6444-6448 (2006).
[35]X. Shu, Y. Chen, H. Yuan, S. Gao, D. Xiao, H2O2 Sensor Based on the Room-Temperature Phosphorescence of Nano TiO2-SiO2 Composite, Analytical Chemistry, 79, 3695-3702 (2007).
[36]Y. Zhu, Z. Cheng, Q. Xiang, X. Chen, J. Xu, Synthesis of functionalized mesoporous TiO2 -SiO2 with organic fluoroalcohol as high performance DMMP gas sensor, Sensors and Actuators B: Chemical, 248, 785-792 (2017).
[37]C.-D. Feng, S.-L. Sun, H. Wang, C.U. Segre, J.R. Stetter, Humidity sensing properties of Nafion and sol-gel derived SiO2-Nafion composite thin films, Sensors and Actuators B: Chemical, 40, 217-222 (1997).
[38]P.-G. Su, S.-C. Huang, Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride, Sensors and Actuators B: Chemical, 105, 170-175 (2005).
[39]P.-G. Su, S.-C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material, Sensors and Actuators B: Chemical, 113, 142-149 (2006).
[40]S.S. Batool, Z. Imran, M. Israr-Qadir, S. Jamil-Rana, M. Usman, H. Jamil, M.A. Rafiq, M.M. Hasan, O. Nur, M. Willander, Silica nanofibers based impedance type humidity detector prepared on glass substrate, Vacuum, 87, 1-6 (2013).
[41]R. Wang, X. Liu, Y. He, Q. Yuan, X. Li, G. Lu, T. Zhang, The humidity-sensitive property of MgO-SBA-15 composites in one-pot synthesis, Sensors and Actuators B: Chemical, 145, 386-393 (2010).
[42]J. Tu, N. Li, W. Geng, R. Wang, X. Lai, Y. Cao, T. Zhang, X. Li, S. Qiu, Study on a type of mesoporous silica humidity sensing material, Sensors and Actuators B: Chemical, 166-167, 658-664 (2012).
[43]V.K. Tomer, S. Duhan, P.V. Adhyapak, I.S. Mulla, P. Gouma, Mn-Loaded Mesoporous Silica Nanocomposite: A Highly Efficient Humidity Sensor, Journal of the American Ceramic Society, 98, 741-747 (2015).
[44]V.K. Tomer, S. Duhan, Highly sensitive and stable relative humidity sensors based on WO3 modified mesoporous silica, Applied Physics Letters, 106, 063105 (2015).
[45]V.K. Tomer, S. Duhan, Nano titania loaded mesoporous silica: Preparation and application as high performance humidity sensor, Sensors and Actuators B: Chemical, 220, 192-200 (2015).
[46]W.-P. Tai, J.-H. Oh, Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films, Sensors and Actuators B: Chemical, 85, 154-157 (2002).
[47]D.-U. Kim, M.-S. Gong, Thick films of copper-titanate resistive humidity sensor, Sensors and Actuators B: Chemical, 110, 321-326 (2005).
[48]K.P. Biju, M.K. Jain, Effect of polyethylene glycol additive in sol on the humidity sensing properties of a TiO2 thin film, Measurement Science and Technology, 18, 2991-2996 (2007).
[49]P.-G. Su, L.-N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films, Sensors and Actuators B: Chemical, 123, 501-507 (2007).
[50]A. Sun, H. Huang, C. Chu, Y. Li, Effect of the pore size of TiO2 porous film on humidity sensitive properties of TiO2/NaPSS composite films, Sensors and Actuators B: Chemical, 160, 1335-1339 (2011).
[51]Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor, Nanotechnology, 22, 275502 (2011).
[52]M. Su, J. Wang, H. Du, P. Yao, Y. Zheng, X. Li, Characterization and humidity sensitivity of electrospun ZrO2:TiO2 hetero-nanofibers with double jets, Sensors and Actuators B: Chemical, 161, 1038-1045 (2012).
[53]S.M. Zanetti, K.O. Rocha, J.A.J. Rodrigues, E. Longo, Soft-chemical synthesis, characterization and humidity sensing behavior of WO3/TiO3 nanopowders, Sensors and Actuators B: Chemical, 190, 40-47 (2014).
[54]W.-D. Lin, C.-T. Liao, T.-C. Chang, S.-H. Chen, R.-J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process, Sensors and Actuators B: Chemical, 209, 555-561 (2015).
[55]W. Geng, R. Wang, X. Li, Y. Zou, T. Zhang, J. Tu, Y. He, N. Li, Humidity sensitive property of Li-doped mesoporous silica SBA-15, Sensors and Actuators B: Chemical, 127, 323-329 (2007).
[56]T. Zhang, R. Wang, W. Geng, X. Li, Q. Qi, Y. He, S. Wang, Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15, Sensors and Actuators B: Chemical, 128, 482-487 (2008).
[57]L. Wang, D. Li, R. Wang, Y. He, Q. Qi, Y. Wang, T. Zhang, Study on humidity sensing property based on Li-doped mesoporous silica MCM-41, Sensors and Actuators B: Chemical, 133, 622-627 (2008).
[58]Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A.G. MacDiarmid, Y. Wei, Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers, Journal of the American Chemical Society, 130, 5036-5037 (2008).
[59]J. Tu, R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, N. Yue, X. Li, Humidity sensitive property of Li-doped 3D periodic mesoporous silica SBA-16, Sensors and Actuators B: Chemical, 136, 392-398 (2009).
[60]Q. Qi, Y. Feng, T. Zhang, X. Zheng, G. Lu, Influence of crystallographic structure on the humidity sensing properties of KCl-doped TiO2 nanofibers, Sensors and Actuators B: Chemical, 139, 611-617 (2009).
[61]L. Li, K. Li-Ying, Z. Zhi-Cheng, W. Lian-Yuan, L. Li-Fang, L. Wei, Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite, Chinese Physics Letters, 27, 050701 (2010).
[62]M. Anbia, S.E.M. Fard, Improving humidity sensing properties of nanoporous TiO2–10mol% SnO2 thin film by co-doping with La3+ and K+, Sensors and Actuators B: Chemical, 160, 215-221 (2011).
[63]W. Geng, Q. Yuan, X. Jiang, J. Tu, L. Duan, J. Gu, Q. Zhang, Humidity sensing mechanism of mesoporous MgO/KCl–SiO2 composites analyzed by complex impedance spectra and bode diagrams, Sensors and Actuators B: Chemical, 174, 513-520 (2012).
[64]H. Zhang, Z. Li, L. Liu, C. Wang, Y. Wei, A.G. MacDiarmid, Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors, Talanta, 79, 953-958 (2009).
[65]S. Ge, X. He, L. Jia, L. Duan, S. Zhang, Q. Zhang, W. Geng, Facile fabrication of NaCl-added mesoporous silica HMS composite and its humidity responsing performance, Journal of Sol-Gel Science and Technology, 82, 635-642 (2017).
[66]R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and RSi(OR)3 precursors, Journal of Molecular Structure, 919, 140-145 (2009).
[67]X. Wu, Y. Tao, L. Dong, J. Hong, Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires, Journal of Materials Chemistry, 14, 901 (2004).
[68]C.B. Mendive, T. Bredow, A. Feldhoff, M. Blesa, D. Bahnemann, Adsorption of oxalate on rutile particles in aqueous solutions: a spectroscopic, electron-microscopic and theoretical study, Phys Chem Chem Phys, 10, 1960-1974 (2008).
[69]A. Grill, D.A. Neumayer, Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization, Journal of Applied Physics, 94, 6697-6707 (2003).
[70]Q. Ma, H. He, C. Liu, Hygroscopic properties of oxalic acid and atmospherically relevant oxalates, Atmospheric Environment, 69, 281-288 (2013).
[71]D. Patil, Y.-K. Seo, Y.K. Hwang, J.-S. Chang, P. Patil, Humidity sensing properties of poly(o-anisidine)/WO3 composites, Sensors and Actuators B: Chemical, 128, 374-382 (2008).
[72]K. Suri, S.Annapoorni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites, Sensors and Actuators B: Chemical, 81, 277-282 (2002).
[73]D. Wang, Y. Lou, R. Wang, P. Wang, X. Zheng, Y. Zhang, N. Jiang, Humidity sensor based on Ga2O3 nanorods doped with Na+ and K+ from GaN powder, Ceramics International, 41, 14790-14797 (2015).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊