跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉力仁
研究生(外文):Li-RenLiu
論文名稱:雙原子鈉分子中的電磁誘發透明
論文名稱(外文):Electromagnetically Induced Transparency in Sodium Dimer
指導教授:蔡錦俊
指導教授(外文):Chin-Chun Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:93
中文關鍵詞:雙原子鈉分子電磁誘發透明
外文關鍵詞:Sodium dimerElectromagnetically Induced Transparency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用了三個不同的偵測方法來研究雙原子鈉分子系統中的電磁誘發透明現象。利用雙光子共振光譜法,我們建立了兩組階梯式三能階系統 (X^1 Σ_g^+ (15,73)→B^1 Π_u (13,74)→3^1 Π_g (8,75) and X^1 Σ_g^+ (5,55)→B^1 Π_u (9,56)→3^1 Π_g (4,55)),並透過偵測三重態的螢光來確認系統的建立與否。
首先,我們利用一組帶有濾光片的光電倍增管來偵測來自三重態的所有螢光。當電磁誘發透明現象發生時,因為上態的居量分布突然急遽減少,應該能從螢光的偵測訊號中心看到一個明顯的凹陷。但在我們的研究結果中,我們發現因為這個偵測方法的螢光,其產生過程會有一個去相干過程(decoherent process), 導致像是電磁誘發透明這種與相干性(coherence)有高關聯的現象在這個觀測方法中不易被觀察到。
接著,我們利用單光儀直接量測回到中間態與基態的螢光。在兩組三能階系統中,回到基態的螢光都有被偵測到而且符合計算的波長,但是並不如預期中會受到耦合光(coupling laser, Toptica laser)的影響,而來自上態的螢光更是沒有被偵測到。
在穿透訊號量測方法中,因為我們的系統是使用氬離子雷射(10GHz)的雷射線寬)作為幫浦雷射(在一般的電磁誘發透明系統中是探測雷射),部分無法被分子吸收的雷射光會造成很大的背景訊號而無法觀察到細微的光強度變化。為了避免這個狀況,我們嘗試去偵測耦合雷射光(Toptica laser, linewidth: 0.5 MHz)的穿透訊號。然而我們依然沒有在此偵測方法中偵測到電磁誘發透明的現象。
縱使本研究目前並沒有在雙原子鈉分子系統中發現電磁誘發透明的現象,我們已提出一個正在進行中的計畫,是利用兩個線寬相當窄的雷射以及與之前不同的能階組合。而我們相信能夠在這個新的系統中,觀察到分子系統中的電磁誘發透明。
We have investigated the electromagnetically induced transparency (EIT) in the diatomic sodium system with three different detection methods. Using the optical-optical double resonance (OODR) spectroscopy, two different combination of ladder-type three-level system in the sodium dimer (X^1 Σ_g^+ (15,73) →B^1 Π_u (13,74)→3^1 Π_g (8,75) and X^1 Σ_g^+ (5,55)→B^1 Π_u (9,56)→3^1 Π_g (4,55)) have been constructed and confirmed by detecting the total fluorescence from the triplet upper state.
First, the total fluorescence signal was detected by a filtered photomultiplier (PMT). Once the EIT occurs, a sharp dip will appear in the middle of the total fluorescence signal because of the sharply decreased population of the upper state. However, the EIT was not observed since the total fluorescence of the triplet upper state is from the population which went through the “decoherent process”; the coherence phenomena such as EIT, is difficult to be observed with this detection method.
Second, either the population of the intermediate state and the upper state was monitored by directly recording the fluorescence back to the intermediate state and ground state respectively through a monochromator. The state-selected fluorescence signals from the intermediate states of two selected three-level system were detected and could be labeled. However, the signal did not be affected by the coupling laser (Toptica laser). Moreover, for the fluorescence signals from the upper state, there was no expected signal appearing in the estimated wavelength.
Since the pump laser (should be probe laser in the ordinary ladder-type EIT) in our system was provided by the Ar^+ laser with 10GHz laser linewidth, the molecules can only absorb certain part of the laser field. Therefore, the transmitted signal of the Ar^+ laser must be accompanied with a large DC background noise. To overcome this problem, we tried to detect the transmitted signal of the Toptica diode laser (coupling laser) which is a narrow band laser (linewidth: 0.5 MHz). However, the EIT phenomena still not be observed in this method.
Although the EIT phenomena was not observed in this study, we have proposed a new system (still diatomic sodium system, but different selected states) which consists of two narrow linewidth tunable ring laser. We believe the EIT phenomena must be observed in such system.

Contents I
List of Figures III
List of Tables VII

Chapter 1 Introduction 1
1.1 Laser Spectroscopy of Sodium Dimer 2
1.2 Electromagnetically Induced Transparency 6
Chapter 2 Theory 9
2.1 Total Energy of Diatomic Molecules 10
2.2 Molecular Term Symbols 14
2.3 Angular Momentum Coupling 17
2.4 Selection Rules 18
2.5 Intensity Distribution 23
2.5.1 Franck Condon Principle 26
2.5.2 Ho ̈nl-London formula 28
2.6 Electromagnetically Induced Transparency 29
Chapter 3 Experiment 37
3.1 Experimental Method 37
3.1.1 Total Fluorescence Detection 37
3.1.2 State-selected Fluorescence Detection 39
3.1.3 Transmitted Signal Detection 40
3.2 Experimental Setup 41
3.3 Heat Pipe 43
3.4 Lasers 44
3.4.1 Ar^+ Laser 44
3.4.2 Diode Laser 44
3.5 Data Acquisition 46
3.5.1 Monochromator 46
3.5.2 Photomultiplier (PMT) 46
3.5.3 Filters 48
3.5.4 Lock-in amplifier 50
3.5.5 Chopper 50
Chapter 4 Results and Discussions 51
4.1 Total Fluorescence Signal 53
4.1.1 Weak transition X^1 Σ_g^+ (15,73)→B^1 Π_u (13,74)→3^1 Π_g (8,75) 53
4.1.2 Strong transition X^1 Σ_g^+ (5,55)→B^1 Π_u (9,56)→3^1 Π_g (4,55) 56
4.1.3 Discussion 58
4.2 State-selected Fluorescence Signal 61
4.2.1 Weak transition X^1 Σ_g^+ (15,73)→B^1 Π_u (13,74)→3^1 Π_g (8,75) 61
4.2.2 Strong transition X^1 Σ_g^+ (5,55)→B^1 Π_u (9,56)→3^1 Π_g (4,55) 64
4.2.3 Discussion 66
4.3 Transmitted Signal Detection 72
Chapter 5 Conclusion 74
Bibliography 78
Appendix 1 - Franck-Condon factors 84
Appendix 2 – Total fluorescence signal 86
Appendix 3 – State-selected fluorescence signal 90
Appendix 4 – Transmitted signal 92
[1] E. Arimondo, Progress in Optics XXXV, edited by E. Wolf, North-Holland, Amsterdam (1996).
[2] A. Imamoglu and S. E. Harris, Lasers Without Inversion: Interference of Dressed Lifetime-Broadened States, Opt. Lett. 14, 1344 (1989).
[3] K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of Electromagnetically Induced Transparency, Phys. Rev. Lett. 66, 2593 (1991).
[4] S. H. Autler and C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev. 100, 703 (1955).
[5] L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, Autler-Townes effect in a strong driven electromagnetically induced transparency resonance, Phys. Rev. A 72, 053801 (2005).
[6] P. Kusch and M. M. Hessel, An analysis of B^1 Π_u-X^1 Σ_g^+ band system of Na_2, J. Chem. Phys. 68, 2591 (1978).
[7] K. K. Verma, J. T. Bahns, A.R. Rajaei-Rizi, William C. Stwalley, and W. T. Zemke, First observation of bound-continuum transitions in the laser-induced A^1 Σ_u^+-X^1 Σ_g^+ fluorescence of Na_2, J. Chem. Phys. 78, 3599 (1983).
[8] R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and J. D’incan, Long-range potentials for the X^1 Σ_g^+ And (1)^1 Σ_g^+ states and the dissociation energy of Na_2, Chem. Phys. Lett. 104, 179 (1984).
[9] 葉俊彥,雙原子鈉分子 B^1 Π_u→X^1 Σ_g^+ 電子態雷射誘導螢光光譜,國立成功大學物理研究所碩士論文 (2014).
[10] P. Kusch and M. M. Hessel, J. Chem. Phys. 63, 4087 (1975).
[11] M. E. Kaminsky, New spectroscopy constants and RKR potential for the A^1 Σ_u^+ state of Na_2, J. Chem. Phys. 66, 4951 (1977).
[12] G. Gerber and R. Moller, Optical-Optical Double Resonance Spectroscopy of the High Vibrational levels of the Na_2 A^1 Σ_u^+ state in a molecular beam, Chem. Phys. Lett. 113.6 (1985).
[13] Li Li and R. W. Field, Direct observation of high-lying 3.PI.g states of the sodium molecule by optical-optical double resonance , J. Phys. Chem. 87, 3020 (1983).
[14] Li Li and R. W. Field, CW Optical-Optical Double Resonance Studies of the 2^3 Π_g,3^3 Π_g,4^3 Σ_g^+ and 1^3 Δ_g Rydberg States of Na_2, J. Mol. Spectrosc. 117, 245 (1986).
[15] T. J. Whang, C. C. Tsai, A. M. Lyyra, Li Li, and W. C. Stwalley, Spectroscopy Study of the Na_2 2^3 Σ_g^+ State by cw Perturbation-Facilitated Optical-Optical Double Resonance Spectroscopy , J. Mol. Spectrosc. 160, 411 (1993).
[16] N. W. Carson, A. J. Taylor, K. M. Jones, and A. L. Schawlow, Two-step polarization-labeling spectroscopy of excited states of Na_2, Phys. Rev. A 24, 822 (1981).
[17] C. Effantin, J. d’Incan, A. J. Ross, R. P. Barrow, and J. Verges, J. Phys. B: At. Mol. Opt. Phys. 15, 1515 (1984)
[18] T. J. Whang, He Wang, A. Marjatta Lyyra, Li Li, and William C. Stwalley, Optical-Optical Double Resonance Spectroscopy of the Na_2 2^1 Π_g State, J. Mol. Spectrosc. 145, 112-122 (1991)
[19] C. C. Tsai, J. T. Bahns, and W. C. Stwalley, Optical-Optical Double Resonance Spectroscopy of the 2^1 Π_g State of Na_2 Using an Ultrasensitive Ionization Detector, J. Mol. Spectrosc. 167, 437 (1994).
[20] 吳惠雯,雙原子鈉分子 2^1 Δ_g電子態與 3^1 Π_g電子態之雙光子共振光譜,國立成功大學化學研究所碩士論文 (2003).
[21] 陳偉翔,雷射光譜在雙原子鈉分子研究上的應用,國立成功大學物理研究所碩士論文 (2006).
[22] 王鵬傑,雙原子鈉分子之參光子共振光譜,國立成功大學物理研究所碩士論文 (2015).
[23] N. N. Rubtsova, Electromagnetically Induced Transparency in a Molecular gas, Opt. Spectrosc. 91, 53 (2001).
[24] J. Qi.A. M. Lyyra, Measurement of Transition Dipole Moments in Lithium Dimers Using Electromagnetically Induced Transparency, Phys. Rev. Lett. 88, 173003 (2002).
[25] J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field and A. M. Lyyra, Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system, Phys. Rev. A 73, 043810 (2006).
[26] A. Lazoudis, E. H. Ahmed, L. Li, T. Kirova, P. Qi, A. Hannson, J. Magnes, and A. M. Lyyra, Experimental observation of the dependence of Autler-Townes splitting on the probe and coupling laser wave-number ratio in Doppler-broadened open molecular systems, Phys. Rev. A 78, 043405 (2008).
[27] K. Ichimura, K. Yamamoto, and N. Gemma, Evidence for Electromagnetically induced transparency in a solid medium, Phys. Rev. A 58, 4116 (1998).
[28] G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co., Malabar, Florida (1989).
[29] M. Born and R. Oppenheimer, On the Quantum Theory of Molecules, Annalen der Physik (in German) 389 (20): 457–484.
[30] J. L. Dunham, The Energy Levels of a Rotating Vibrator, Phys. Rev. 41, 721 (1932).
[31] F. Hund, Allgemeine Quantenmechanik des Atom und Molekelbaues, Quantentheorie, vol. 2, pp. 561-694 (1993).
[32] 何宗勳,銫原子中電磁誘發透明的躍遷特性,國立成功大學物理研究所碩士論文 (2013).
[33] 陳宏任,磁光阱中低溫銫原子的電磁誘發透明,國立成功大學物理研究所碩士論文 (2013).
[34] 陳維甫,利用電磁誘發透明測量銫原子雷德堡態的精確頻率,國立成功大學光電科學與工程研究所碩士論文 (2013).
[35] 蘇靖淵,光泵浦效應對銫原子階梯式電磁誘發透明的影響,國立成功大學物理研究所碩士論文 (2014).
[36] 謝孟晃,熱效應對於銫原子電磁誘發透明之影響,國立成功大學物理研究所碩士論文 (2014).
[37] 阮氏妙賢,利用電磁誘發透明探討銣原子的超精細結構,國立成功大學物理研究所碩士論文 (2014).
[38] 呂慧雯,溫度對階梯式及V型雙光子電磁誘發透明譜線之影響,國立成功大學物理研究所碩士論文 (2015).
[39] 陳語涵,利用電磁誘發透明及碘分子超精細光譜做銫原子能態的精密頻率量測,國立成功大學物理研究所碩士論文 (2015).
[40] S. E. Harris, Refractive-index control with strong fields, Opt. Lett. 19, 2018-2020 (1994).
[41] A. S. King, An electric furnace for spectroscopic investigations, with results for the spectra of titanium and vanadium, Astrophys. J. 28, 300 (1908).
[42] C. R. Vidal and J. Cooper, Heat‐Pipe Oven: A New, Well‐Defined Metal Vapor Device for Spectroscopic Measurements, J. Appl. Phys. 40, 3370 (1969).
[43] C. R. Vidal and F. B. Haller, Heat Pipe Oven Applications. I. Isothermal Heater of Well Defined Temperature. II. Production of Metal Vapor‐Gas Mixtures, Rev. Sci. Instr. 42, 1779 (1971).
[44] C. R. Vidal and M. M. Hessel, Heat‐Pipe Oven for Homogeneous Mixtures of Saturated and Unsaturated Vapors; Application to NaLi, J. Appl. Phys. 43, 2776 (1972).
[45] J. T. Bahns, Ph.D. dissertation, The University of Iowa, Iowa (1983).
[46] J. J. Camacho, A. Pardo, and J. M. L. Poyato, A study of the B^1 Π_u→X^1 Σ_g^+ system of Na_2, J. Phys. B: At. Mol. Opt. Phys. 38, 1935 (2005).
[47] C. C. Tsai, J. T. Bahns, and W. C. Stwalley, First observation of the quasibound levels and tunneling line broadening in the 3^1 Π_g state of Na_2 using an ultrasensitive ionization detector, J. Chem. Phys. 99, 10 (1993).
[48] H. Wang, T. J. Whang, A. M. Lyyra, Li Li, and W. C. Stwalley, Study of the 4^1 Σ_g^+ “shelf state of Na_2 by optical-optical double resonance spectroscopy, J. Chem. Phys. 94, 7 (1991).
[49] L. Li and A. M. Lyyra, Observation of the 3(3d)^3 Σ_g^+ State of Na_2, J. Mol. Spectrosc. 155, 184 (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊