(18.210.12.229) 您好!臺灣時間:2021/03/03 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾靖富
研究生(外文):Jing-FuTseng
論文名稱:氣相沉積多元鈣鈦礦之太陽能電池
論文名稱(外文):Multi-component perovskite fabricated via vapor-assisted deposition
指導教授:黃榮俊黃榮俊引用關係
指導教授(外文):J.C.A. Haung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:55
中文關鍵詞:多元鈣鈦礦太陽能電池低壓化學氣相沈積
外文關鍵詞:Multi-perovskite solar cellVapor-assisted deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要著重在氣相沈積合成多元鈣鈦礦薄膜載在n-type結構之太陽能電池以及在不同濃度、反應時間、摻雜分子下合成鈣鈦礦膜之分析。由初期高真空下的共蒸鍍系統發展出的不同氣相沈積合成法,透過緩慢的反應過程來達到較好的成核與成長過程,氣相沈積合成之鈣鈦礦晶粒大且無破洞可減少缺陷與漏電的產生,在吸收(UV-vis)與受激螢光放光(Photoluminescence)等光學分析上皆與溶液製成法合成之高效率鈣鈦礦有相同的結果,說明氣相沈積為可合成高效率鈣鈦礦的方法之一。氣相沈積除了使用在傳統之MAPbI3的鈣鈦礦外也可用於不同材料,FAPbI3(Formamidinium lead iodide)是一個能隙寬較MAPbI3窄的材料,因此吸光範圍會紅移而使光電流提升而進一步優化來達到元件效率的提升,透過摻雜FAI其鈣鈦礦太陽能電池元件效率達到15.48%。摻雜MABr其鈣鈦礦太陽能電池元件效率達11.84%。
In this research, we manufactured multi-component perovskite films by VASP method. We change the reaction time of fabricated CH3NH3PbI3 perovskite films. The PSCs fabricated at reaction time 2 h have the best performances with Voc of 1.01 V, Jsc of 20.99 mA cm-2, and FF of 0.70, leading to an overall efficiency of 15.10%. We change the powder of fabricated multi-component perovskite film via VASP method. We used the FAI and MABr powder to a dual-source vapor deposition process in 2 h at 150 °C. The PSCs fabricated by only doping FAI have best performance with Voc of 1.02 V, Jsc of 19.54 mA cm-2, and FF of 0.76, leading to an overall efficiency of 15.48%.
中文摘要...I
英文摘要...II
SUMMARY...II
INTRODUCTION...III
EXPERIMENT AND METHODS...IV
RESULTS AND DISCUSSION...VI
CONCLUSION...XII
誌謝...XIII
目錄...XIV
表目錄...XVII
圖目錄...XVIII
第一章 緒論...1
1-1前言...1
1-2 太陽能電池之演進與發展...2
1-3 研究動機...4
第二章 相關理論與文獻回顧...5
2-1 太陽能電池元件量測原理...5
2-1-1太陽能光譜與空氣質量對太陽光照度之影響...5
2-1-2太陽能電池量測參數與原理...6
2-1-3量子轉換效率量測原理...8
2-2 鈣鈦礦(CH3NH3PbI3 , Perovskite)的特性...9
2-3 氣相沈積鈣鈦礦的演進...11
第三章 元件製備與分析儀器原理...25
3-1實驗流程...25
3-1-1基板製備...25
3-1-2 under layer阻擋層製備...25
3-1-3 TiO2多孔層製備與TiCl4後處理...26
3-1-4氣相合成鈣鈦礦步驟..26
3-1-5電洞傳輸層與電極製備...26
3-2製成儀器...27
3-2-1手套箱與簡易手套箱...27
3-2-2旋轉塗佈機(Spin coater)...28
3-2-3高溫爐管加熱系統...28
3-2-4高真空蒸鍍系統...29
3-3 量測與分析儀器工作原理...29
3-3-1掃描式電子顯微鏡(Scanning Electron Microscopy , SEM)...29
3-3-2 X光繞射分析儀(XRD)...30
3-3-3 紫外/可見光光譜儀(Ultraviolet/visible spectroscopy)...31
3-3-4 光致螢光光譜儀 (Photoluminescence, PL )...32
3-3-5 電流-電壓特性曲線量測(I-V curves)...33
3-3-6 光電轉換效率量測(IPCE)...34
第四章 實驗結果與討論...36
4-1 MAPbI3 標準元件...36
4-2 摻雜FAI與MABr之鈣鈦礦元件...44
第五章 結論...51
第六章 參考文獻...52
1.Becquerel, E., Compt. Rend., 1839.9
2.Chapin, D. M., Fuller, C. S., & Pearson, G. L. A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677. (1954)
3.Carlson, D. E., & Wronski, C. R. Amorphous silicon solar cell. Applied Physics Letters, 28(11), 671-673. (1976)
4.Blakers, A. W., Wang, A., Milne, A. M., Zhao, J., & Green, M. A. 22.8% efficient silicon solar cell. Applied Physics Letters, 55(13), 1363-1365. (1989)
5.Verlinden, P., Deng, W., Zhang, X., Yang, Y., Xu, J., Shu, Y., ... & Ping, F. Strategy, development and mass production of high-efficiency crystalline Si PV modules. Paper 4sMoO, 1(6). (2014)
6.First Solar Press Release, August 5, (2014).
7.Kayes, B. M., Nie, H., Twist, R., Spruytte, S. G., Reinhardt, F., Kizilyalli, I. C., & Higashi, G. S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE (pp. 000004-000008). IEEE. (2011, June)
8.Osborne, M. Hanergy’s Solibro has 20.5% CIGS solar cell verified by NREL. (2014)
9.Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proceedings, 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, Japan (2013).
10.Dr Frank Dimroth, et al. Press Release 22/13, September 23, (2013)
11.Komiya, R., Fukui, A., Murofushi, N., Koide, N., Yamanaka, R., & Katayama, H. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. In Technical Digest, 21st International Photovoltaic Science and Engineering Conference (pp. 2C-5O). (2011, November)
12.O’regan, B., & Grfitzeli, M. A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353(6346), 737-740. (1991)
13.Grätzel, M. Photoelectrochemical cells. Nature, 414(6861), 338-344. (2001)
14.Peumans, P., & Forrest, S. R. (2001). Very-high-efficiency double-heterostructure copper phthalocyanine / C60 photovoltaic cells. Applied Physics Letters, 79(1), 126-128. (2001)
15.Werner, J., Weng, C. H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., ... & Ballif, C. Efficient monolithic perovskite/silicon tandem solar cell with cell area ) 1 cm2. The journal of physical chemistry letters, 7(1), 161-166. (2015)
16.Emery, K., & Myers, D. Reference solar spectral irradiance: air mass 1.5. Center, RERD, Ed. (2009)
17.Carson, J. A. (Ed.). Solar cell research progress. Nova Publishers. (2008)
18.Smestad, G. P. Optoelectronics of solar cells (Vol. 115). Spie Press. (2002)
19.Claeys, C., & Simoen, E. (Eds.). Germanium-based technologies: from materials to devices. Elsevier. (2011)
20.Hao, F., Stoumpos, C. C., Chang, R. P., & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 136(22), 8094-8099. (2014)
21.Bai, S., Wu, Z., Wu, X., Jin, Y., Zhao, N., Chen, Z., ... & Liu, R. (2014). High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research, 7(12), 1749-1758. (2014)
22.Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., & Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699. (2015)
23.Shen, P. S., Chen, J. S., Chiang, Y. H., Li, M. H., Guo, T. F., & Chen, P. Low‐Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large‐Area Module. Advanced Materials Interfaces, 3(8). (2016)
24.Cui, X. P., Jiang, K. J., Huang, J. H., Zhou, X. Q., Su, M. J., Li, S. G., ... & Song, Y. L. Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells. Chemical Communications, 51(8), 1457-1460. (2015)
25.Liu, M., Johnston, M. B., & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. (2013)
26.Chen, C. W., Kang, H. W., Hsiao, S. Y., Yang, P. F., Chiang, K. M., & Lin, H. W. Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials, 26(38), 6647-6652. (2014)
27.Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H., ... & Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2), 622-625. (2013)
28.Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S., & Qi, Y. High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry A, 2(44), 18742-18745. (2014)
29.Li, Y., Cooper, J. K., Buonsanti, R., Giannini, C., Liu, Y., Toma, F. M., & Sharp, I. D. Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. The journal of physical chemistry letters, 6(3), 493-499. (2015)
30.Sedighi, R., Tajabadi, F., Shahbazi, S., Gholipour, S., & Taghavinia, N. Mixed‐Halide CH3NH3PbI3− xXx (X= Cl, Br, I) Perovskites: Vapor‐Assisted Solution Deposition and Application as Solar Cell Absorbers. ChemPhysChem, 17(15), 2382-2388. (2016)
31.Yin, X., Yao, Z., Luo, Q., Dai, X., Zhou, Y., Zhang, Y., ... & Lin, H. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact. ACS applied materials & interfaces, 9(3), 2439-2448. (2017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔