跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡易霖
研究生(外文):Yi-LinTsai
論文名稱:利用空間光調製器產生全像液晶聚合物薄膜光學渦流晶格之研究
論文名稱(外文):Studies of optical vortex lattices storaged in holographic polymer-dispersed liquid crystals generated by a Spatial Light Modulator
指導教授:傅永貴許家榮許家榮引用關係
指導教授(外文):Andy Ying-Guey FuhChia-Rong Sheu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:空間光調製器液晶全像干涉拓樸荷
外文關鍵詞:Spatial Light Modulatorliquid crystalHolographic interferenceTopological charge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由加載不同相位光罩至空間光調製器(Spatial Light Modulator, SLM) 來產生傳統晶體與光學渦流晶體(optical vortices lattice)結構。並且利用PDLC(Polymer Dispersed Liquid Crystal)來記錄晶體資訊,最後以實驗與傅立葉數值模擬的方式來重建HPDLC(Holographic PDLC)之繞射光強分布,並研究其物理及光學特性。本實驗主要分為三部分:
第一部分實驗為找尋最佳曝光參數,由於光學渦流中央具有光強度極弱之缺陷點,也就是說在PDLC曝光過程中,周圍晶體區與中央缺陷區的NOA81單體聚合速率不一致。本研究藉由量測記錄光學渦流晶體HPDLC之繞射效率與偏光顯微鏡下之影像來找出最佳曝光參數。
第二部分實驗藉由加載仿真多面稜鏡相位光罩至SLM,將空間光進行相位調製來得到傳統之對稱晶體,其晶體結構與晶體週期皆與傅立葉數值模擬結果相符。接著利用HPDLC記錄傳統晶體訊息,以實驗與數值模擬重建其繞射光斑,最後由固態物理理論說明正空間晶格(傳統晶體)與倒空間晶格(繞射光斑)具有相同的點群對稱性。
第三部分實驗將仿真多面稜鏡相位光罩之幾何位置進行螺旋相位疊加,以達到多道螺旋光全像干涉產生光學渦流晶體之目的。另外藉由數學理論得知光學渦流晶體會記錄每兩道螺旋光拓樸荷差值之訊息,由於光學渦流晶體因具有波前邊緣錯位特性(叉子條紋)使HPDLC繞射光斑具有不同拓樸荷,且重建繞射光會遵循繞射拓樸荷選擇律。
A simple but effective method for producing multi helical-beam interferences based on Spatial Light Modulator (SLM) with digital program of phase masks is presented. Firstly, we generate the phase mask corresponding to the symmetrical multi-facet pyramid lens in SLM to spatially modulate an incident laser beam to form desired two-dimensional (2D) multi-beam interference patterns. Multiple helical-beam interferences can be realized by superposing a multi-facet pyramid lenses phase with a helical phase. Then, we demonstrate the storage of the helical interference patterns on a PDLC (Polymer Dispersed Liquid Crystal) to form a HPDLC (Holographic PDLC), and then the diffraction from a HPDLC is examined.
摘要 I
Extended Abstract III
誌謝 VIII
目錄 X
表目錄 XIV
圖目錄 XV
符號 XXI
第一章 緒論 1
1-1 前言 1
1-2 論文結構 3
第二章 液晶簡介 4
2-1 何謂液晶 4
2-2 液晶的分類 5
2-2-1 向列型液晶 (Nematics) 7
2-2-2 膽固醇液晶(Cholesterics) 8
2-2-3 層列型液晶(Smectics) 10
2-2-4 圓盤狀液晶(Discotics) 11
2-2 液晶物理特性 12
2-3-1 彈性連續體理論(The elastic continuum theory) 12
2-2-1 液晶的雙折射性(Birefringence) 14
2-2-2 外加電場對液晶之光電現象 18
2-2-3 溫度對液晶折射率之影響 19
2-3 聚合物混合液晶薄膜(polymer-dispersed liquid crystal, PDLC) 21
2-4-1 PDLC的製作 21
2-4-2 PDLC光電特性 22
2-4-3 PDLC元件 24
第三章 相關實驗理論 25
3-1 全像液晶聚合物薄膜(holographic polymer dispersed liquid crystal, HPDLC) 25
3-1-1 HPDLC製作與應用 25
3-1-2 HPDLC相分離機制 26
3-2 全像術(holography) 28
3-2-1 全像術簡介 28
3-2-2 利用全像干涉製作晶體 31
3-2-3 全像干涉與倒晶格向量之關係 32
3-3 倒晶格繞射 34
3-3-1 倒晶格向量與繞射斑點之關係 34
3-3-2 數值方法模擬晶格之繞射斑點 36
3-4 光學渦流(optical vortex)簡介 37
3-4-1 波前錯位 37
3-4-2 螺旋錯位型光學渦流簡介 40
第四章 樣品製作與光路架設 41
4-1 液晶空間光調製器 41
4-1-1 液晶空間純相位光調製器之分類 41
4-1-2 液晶空間光調製器工作原理 43
4-1-3 相位光罩 45
4-2 樣品配置 49
4-2-1 材料介紹 49
4-2-2 PDLC樣品製作 52
4-3 實驗流程 54
4-3-1 實驗動機 54
4-3-2 製作HPDLC之實驗架設 55
4-3-3 HPDLC重建繞射光斑 56
第五章 實驗結果與討論 58
5-1 選定最佳曝光參數 58
5-2 多道高斯光束干涉之實驗和模擬結果 61
5-2-1 閃耀光柵型相位光罩 61
5-2-2 多道高斯光束干涉 63
5-2-3 傳統晶體之遠場繞射 65
5-3 光學渦流晶體之實驗和模擬結果 67
5-3-1 螺旋光束之全像干涉理論 67
5-3-2 螺旋光束產生之光學渦流晶體 68
第六章 總結與未來展望 83
6-1 總結 83
6-2 未來展望 84
參考文獻 87
[1]Forbes Andrew, Angela Dudley, and Melanie McLaren. Creation and detection of optical modes with spatial light modulators. Advances in Optics and Photonics, 8.2 (2016): 200-227.
[2]Lutkenhaus. J., et al. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask. Optics express, 21.22 (2013): 26227-26235.
[3]Nye. J. F., and M. V. Berry. Dislocations in wave trains. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 336 (1974): 1605.
[4]Paterson L. et al. Controlled rotation of optically trapped microscopic particles. Science, 292 (2001): 912–914.
[5]Nagali Eleonora, et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nature Photonics, 3.12 (2009): 720-723.
[6]Bernet Stefan, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy. Optics express, 14.9 (2006): 3792-3805.
[7]松本正一、角田示良和著, 劉瑞祥譯,“液晶之基礎與應用, 國立編譯館出本 (1996).
[8]液晶應用技術研究會 編著, “最新液晶應用技術, 建興出版社 (1997).
[9]顧鴻壽 編著, “光電液晶平面顯示器-第二版, 新文京開發出版社(2004).
[10]小林駿介 著, “e世代液晶顯示器, 全華圖書 (2002).
[11]趙中興 著, “顯示器原理與技術, 全華圖書 (2001).
[12]Pochi Yen et al, “Optical of Liquid Crystal Display, John Wiley & Sons Inc. (2006).
[13]李冠卿 著,“近代光學, 聯經出版事業公司 (1988).
[14]苗村 省平 著, 陳建銘 譯, “液晶顯示器技術入門, 全華圖書 (2005).
[15]E. B. Priestley, P. J. Wojtowicz and P. Sheng, “Introduction to Liquid Crystals, Princeton, New Jersey (1975).
[16]I. C. Khoo, Liquid Crystals Physical Properties and Nonlinear Optical Phenomena, John Wiley & Sons, New York (1995).
[17]Marinelli, M., and F. Mercuri. Effects of fluctuations in the orientational order parameter in the cyanobiphenyl homologous series. Physical Review E, 61.2 (2000): 1616.
[18]Dave, J. S., and R. A. Vora. Mesomorphic behaviour of the cholesteryl esters-I: Pn-alkoxybenzoates of cholesterol. Liquid crystals and ordered fluids. Springer US, (1970): 477-487.
[19]Kelker, Hans. History of liquid crystals. Molecular Crystals and Liquid Crystals, 21.1 (1973): 1-48.
[20]Chandrasekhar, S., B. K. Sadashiva, and K. A. Suresh. Liquid crystals of disc-like molecules. Pramana, 9.5 (1977): 471-480.
[21]黃子強編著,“液晶顯示原理,國防工業出版社出版 (2006)。
[22]A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, New York, (1997) .
[23]Lee. Hyoung-Kwan et al. All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal. Chemistry of materials, 10.5 (1998): 1402-1407.
[24]朱自強, 王仕璠, 蘇顯渝 編著, “現代光學教程, 四川大學出版社, 成都(1990).
[25]P. G. De. Gennes and J. Prost, The Physics of Liquid Crystal, 2nd ed., Oxford University Press, New York (1933).
[26]Deng-Ke Yang and Shin-Tson Wu, Fundamentals of Liquid Crystal Devices (Wiley 2006).
[27]C. Janglin, C Wayne, and F. Mark, Handbook of Visual Display Technology, (Springer, 2012).
[28]李明賢, “液晶聚合物薄膜光子晶體超稜鏡現象之研究, 國立成功大學, 物理系研究所 (2005).
[29]Escuti Michael, and Gregory Crawford. Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: A diamond-like face centered cubic. Molecular Crystals and Liquid Crystals, 421.1 (2004): 23-36.
[30]T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L.Sutherland, Annu. Rev. Master. Sci. 30, (2000): 83-115.
[31]T. J. Bunning, et al. The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals. Polymer, 36.14 (1995): 2699-2708.
[32]Joseph W. Goodman, “Introduction to Fourier Optics, 3th ed. (Roberts & Company Publishers, 2005).
[33]Escuti, M. J., J. Qi, and G. P. Crawford. Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals. Optics letters, 28.7 (2003): 522-524.
[34]Escuti Michael J., Jun Qi, and Gregory P. Crawford. Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology. Applied physics letters, 83.7 (2003): 1331-1333.
[35]Gorkhali, Suraj P., Jun Qi, and Gregory P. Crawford. Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries. JOSA B, 23.1 (2006): 149-158.
[36]Charles Kittel, introduction to solid state physics, 8th ed. (Wiley 2005).
[37]Carpentier, Alicia V., et al. Making optical vortices with computer-generated holograms. American Journal of Physics, 76.10 (2008): 916-921.
[38]Chu, Shu-Chun, et al. Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation. Optics express, 20.7 (2012): 7128-7141.
[39]Ko, Shih-Wei, et al. Electrical control of shape of laser beam using axially symmetric liquid crystal cells. Applied optics, 51.10 (2012): 1540-1545.
[40]Ruffato, G., et al. Spiral phase plates for the generation of high-order Laguerre-Gaussian beams with non-zero radial index. SPIE OPTO. International Society for Optics and Photonics, 2015.
[41]Carpentier, Alicia V., et al. Making optical vortices with computer-generated holograms. American Journal of Physics, 76.10 (2008): 916-921.
[42]Basistiy, I. V., M. S. Soskin, and M. V. Vasnetsov. Optical wavefront dislocations and their properties. Optics Communications, 119.5 (1995): 604-612.
[43]陳建宏, “以二階光柵的一階繞射來量測空間光調變器特性之研究, 國立台北科技大學, 光電工程研究所 (2005).
[44]Hermerschmidt Andreas, et al. Wave front generation using a phase-only modulating liquid-crystalbased micro-display with HDTV resolution. Proc. SPIE, (2007):6584.
[45]PLUTO Spatial Light Modulator – Microdisplay Feature,
http://www.holoeye.com/spatial-light-modulators/slm-pluto-phase-only. html
[46]Sacks, Z. S., D. Rozas, and G. A. Swartzlander. Holographic formation of optical-vortex filaments. JOSA B, 15.8 (1998): 2226-2234.
[47]Zhou, Qiang, et al. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering. Optics express, 21.8 (2013): 9851-9861.
[48]Leach, Jonathan, et al. Interactive approach to optical tweezers control. Applied optics, 45.5 (2006): 897-903.
[49]楊景瀚, “液晶聚合物準光子晶體之製作及其雷射研究, 國立成功大學, 物理系研究所 (2013).
[50]Arrizón, Victor, et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. JOSA A, 24.11 (2007): 3500-3507.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top