跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家瑞
研究生(外文):Chia-JuiHsu
論文名稱:電化學加工之參數探討與流場模擬
論文名稱(外文):Parameter Stusies and Flow Pattern Simulation in Electrochemical Machining
指導教授:林三益林三益引用關係
指導教授(外文):San-Yi Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:106
中文關鍵詞:電化學加工材料移除率數值模擬
外文關鍵詞:Electrochemical MachiningCFDMultiphysics simulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:691
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電化學加工(ECM)是屬於非傳統加工的一種,電化學加工(ECM)利用低電壓,高電流使材料以離子狀態快速溶解,擁有加工速度快、工件表面無應力殘留與對複雜的工件也能輕易地加工等優勢。在過去的文獻中,電解加工在數值模擬的資訊較不足,因此本研究在於探討加工參數對流場的影響,以供未來業界與數值模擬參考。
本研究是利用ANSYS CFX商用套裝軟體進行電解加工之內部流場之數值模擬,本研究紊流模型K-Epsilon紊流模型。計算格點由ANSYS ICEM產生非結構性網格,採用混合型網格,於流道壁面周圍建立棱柱型網格(Prism Mesh)來模擬邊界層黏性流場,其他計算領域則採用四面體網格(Tetrahedron Mesh )。並對其模擬結果分析加工電壓、電解液流量、電極間隙與工件材料之間的關係與探討對電流密度、溫度分布、速度分布等之影響。
在模擬結果方面,增加加工電壓、電解液的導電係數與縮短電極間隙的高度,材料移除速率均會增加,但流場的高溫也會隨之上升,若電解液的流量不足會造成流場溫度分佈不均勻;在工具材料的選擇,工具材料的熱傳導係數會影響流場的高溫,熱傳導係數低的材料在流場的高溫會高於熱傳係數高的材料;導電係數好的電解液可以達到低電壓高電流的工作模式,流場的溫度也比高電壓低導電係數低。
In this study, we use the commercial software, ANSYS CFX, to simulate the flow fields of the electrochemical machining(ECM). The main objective is to analyze the parameters in ECM. In the simulation, we used a high order scheme and K-Epsilon turbulence model to solve the incompressible Navier-Stokes equations coupled with electromagnetic sources. The grid system used is a unstructured grid system generated by ICEM CFD.
First, three test cases, three-dimensional cavity, three-dimensional curved pipe, and Aluminium matrix composites using Multiphysics simulation, are simulated to demonstrate higher simulation accuracy. Then the Aluminium matrix composites using Multiphysics simulation is investigated. Finally, the effect of processing voltage, material of the tool, conductivity of the electrolyte, and interelectrode gap(IEG) on the flow field are investigated.
中文摘要I
Extneded AbstractIII
目錄VII
圖目錄X
表目錄XIV
符號說明XV
第一章 緒論1
1.1 前言1
1.2 研究動機與目的2
1.3 文獻回顧3
1.4 內容大鋼4
第二章 理論基礎6
2.1電化學加工之基本理論6
2.1.1基本理論6
2.1.2電流效率(Current Efficiency)7
2.2導電度、導電度與濃度的關係、電流密度7
2.2.1 導電度(Conductivity)7
2.2.2 導電度與濃度的關係9
2.2.3電流密度9
2.3熱傳遞理論10
2.3.1熱傳導10
2.3.2熱對流12
2.3.3熱輻射15
第三章 數值方法18
3.1 耦合概述18
3.2數值方法20
3.2.1網格生成20
3.2.2流場統御方程式[12]20
.2.3紊流模型(Turbulence Model)21
3.2.4熱分析23
3.3壁面函數27
第四章 程式與物理模型驗證28
4.1 程式驗證一-三維空穴流28
4.2程式驗證二- U型彎管流場驗證29
4.3 程式驗證三-鋁合金Multiphysics Simulation驗證30
4.4 網格獨立性分析32
第五章 結果與討論34
5.1 改變工作電壓34
5.2 更換工具(Tool)材料36
5.3 改變電解液的導電係數37
5.4改變電極間隙(IEG)的高度39
第六章 結論與建議42
參考文獻44
圖2-3 熱傳導示意圖51
圖2-4 牛頓冷卻示意圖51
圖4-1空穴流邊界條件與網格設置52
圖4-2 Re=100 在Z=0.5處 (a)水平中心線Y方向速度分布 (b)垂直中心線X方向速度分布53
圖4-3 Re=200 在Z=0.5處 (a)水平中心線Y方向速度分布 (b)垂直中心線X方向速度分布54
圖4-4 Re400 在Z=0.5處 (a)水平中心線Y方向速度分布 (b)垂直中心線X方向速度分布55
圖4-5 Re=1000 在Z=0.5處 (a)水平中心線Y方向速度分布 (b)垂直中心線X方向速度分布56
圖4-6 U型彎管邊界條件與網格設置57
圖4-7 M.R.H. Nobari al. [15] (a)彎管六面體網格 (b)彎管尺寸示意圖58
圖4-9 U型彎管不同角度與文獻比較之速度圖60
圖4-10 [5] Matthias et al. (a)分析機台示意圖 (b)流道示意圖 61
圖4-11 [5] Matthias et al. 流場2D非結構網格62
圖4-12 厚度為10μm的模型62
圖4-13 流場網格設置63
圖4-14 流場的邊界條件設定圖64
圖4-15 Velocity inlet=7(m/s)的Pressure contour65
圖4-16 Velocity inlet=7(m/s)的Velocity contour67
圖4-17 Velocity inlet=7(m/s)的Temperature contour 67
圖4-18 Velocity inlet=25(m/s)的Pressure contour68
圖4-19 Velocity inlet=25(m/s)的Velocity contour70
圖4-20 Velocity inlet=25(m/s)的Temperature contour 70
圖4-21 入口速度與流場最高溫比較圖71
圖4-22 入口速度與流場最高速度比較圖71
圖4-23 入口速度與Vcentre比較圖72
圖4-24 流場最高溫度網格獨立性分析72
圖4-25 流場最高速度網格獨立性分析73
圖4-26 平均電流密度網格獨立性分析73
圖5-1 不同電壓對流場最高速度比較圖74
圖5-2 不同電壓對流場最高溫度比較圖74
圖5-3 不同電壓對平均電流密度比較圖75
圖5-4 加工電壓5V的流場溫度分布圖 (a)入口速度為7.5[m/s] (b)入口速度為25[m/s]76
圖5-5 加工電壓7V的流場溫度分布圖 (a)入口速度為7.5[m/s] (b)入口速度為25[m/s]77
圖5-6 加工電壓9V的流場溫度分布圖 (a)入口速度為7.5[m/s] (b)入口速度為25[m/s]78
圖5-7 不同工具材料對流場最高速度比較圖79
圖5-8 不同工具材料對流場最高溫度比較圖81
圖5-9 不同工具材料對平均電流密度比較圖82
圖5-10 Steel 304不同熱傳導係數對流場最高溫度比較圖82
圖5-11 電解液不同導電係數對流場最高溫度比較圖83
圖5-12 電解液不同導電係數對平均電流密度比較圖84
圖5-13 電解液導電係數=10.5[S/m]的流場溫度分布圖 (a)入口速度為7.5[m/s] (b)入口速度為25[m/s]85
圖5-14 電解液導電係數=14 [S/m]的流場溫度分布圖 (a)入口速度為7.5[m/s] (b)入口速度為25[m/s]86
圖5-15 不同電壓、導電係數 (a)流場最高溫度比較圖88
(b)電流密度比較圖88
圖5-16 電極間距高度對流場最高速度比較圖89
圖5-17 電極間距高度對Vcentre比較圖89
圖5-18 電極間距高度對流場最高溫度比較圖90
圖5-19 電極間距高度對平均電流密度比較圖90
表3.1 自動體網格類型與生成方法概述[23]47
表4-1 材料性質表49
表4-2 邊界條件設定50
[1]H. Hocheng, Y. H. Sun, S. C. Lin and P. S. Kao, “A Material Removal Analysis of Electrochemical Machining Using Flat-end Cathode, Journal of Material Pro essing Te hnology, Vol. 140, pp.(2003)
[2]A.N. Zaytsev, V.P. Zhitnikov and T.V. Kosarev, “Formation mechanism and Elimination of the Workpiece Surface Macro-defects, Aligned along the Electrolyte Stream at Electrochemical Machining, Journal of Materials Processing Technology, Vol. 149, pp. 439-444 (2004).
[3]J. C. S. Neto, E. M. Silva, and M. B. Silva, “Intervening Variables in Electrochemical Machining, Journal of Materials Processing Technology, Vol. 179, pp. 92-96 (2006).
[4]傅秀清、康敏、楊勇、劉澤祥,球形陰極數控電解加工的流場仿真及試驗研究,中國機械工程第24券第8期2013年4月
[5]Matthias Hackert-Oschatzchen , Norbert Lehnert , Michael Kowalick, Gunnar Meichsner, Andreas Schubert, “Analysis of the Electrochemical Removal of Aluminium Matrix Composite Using Multiphysics Simulation’’, Professorship Micromanufacturing Technology, Technology Universitat Chennitz Chemnitz,09107 Chemnitz, Germany(2014).
[6]許志成、張振暉、洪榮洲,電化學加工製程之電解液流場方向切換研究,綠色科技工程與應用研討會,論文編號:GT2,2013年5月
[7]李志永,基於間隙實際電場分布的葉片電解加工陰極設計,華南理工大學學報,Vol.35,No.3,March,2007.
[8]A.A. Nayak,S. Gangopadhyay, D.K. Sahoo, “Modelling, simulation and experimental investigation for generating ‘I’ shaped contour on Inconel 825 using electro chemical machining, Journal of Manufacturing Processes 23, pp. 267-277,(2016)
[9]Vikas Ingale, R.M. Tayade, “Analysis of ECM Electrode and ECM Electrolyte for Machining Of Star Shaped Complex Profile over Iron Work Piece Using ANSYS Fluent Software, International Journal of innovative research in technology, Volume 3, Issue 2, pp. 10-13, July, (2016)
[10]V.Sivabharathi, P. Marimuthu, S.Ayyappan, “NUMERICAL AND EXEPERIMENTAL STUDY ON ENHANCEMENT OF ELECTROCHEMICAL MACHINING PERFORMANCE BY BAFFLED TOOL, International Journal of Advanced Engineering Technology, Vol VII, Issue II, April-June,(2016)
[11]紀兵兵、陳金瓶,ANSYS ICEM CFD網格劃分技術實例詳解,中國水利水店出版社,2011
[12]ANSYS CFX Theory Guide , ANSYS , Inc.2013
[13]B.E.Launder and D.B.Spalding, “The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineer’’, Vol.3,pp.269-289
[14]C. Shu , L. Wang, and Y. T. Chew, “Numerical computation of three-dimensional incompressible Navier-Stokes equation in primitive variable from DQ method ’’, Int. J. Numer. Meth. Fluid , pp.345-368 , 2003.
[15]M. R. H. Nobari and E. Amani , “A numerical investigation of developing flow and heat transfer in a curve pipe’’, International Journal of Numerical Method for Heat and Fluid Flow, Vol. 19,No.7,pp. 77-85, 2000.
[16]ASM Aerospace Specification Metals Inc.
[17]張皓瑋,電解液對電化學系加工影響性之分析研究,國立中央大學機械工程學系碩士論文,2007年
[18]葉佳錡、李群威、邱源成、李宗榮,電解加工條件對微鎢針幾何形狀及尺寸之影響,中國機械工程學會第二十四屆全國學術研討會論文集,中華民國九十六年十一月二十三、二十四日
[19]Gali Chiranjeevi Naidu, K Dharma Reddy, P V Ramaih, “Experimental Evaluation of Electrolyte Flow Pattern in ECM Tool Using CFD Analysis, International Journal of Advanced Engineer Research and Science, Vol.3, Issus.10,Oct-2016
[20]劉育修,電極幾何形狀對電化學放電加工氣泡生成之影響,國立中山大學機械與機電工程學系碩士論文,2007年
[21]Anamika Mishra, D B Jadhav, P V Jadhav, “CFD Analysis of Electrolyte Flow Pattern in Pulse ECM and to Optimize MRR for Circular Tool, International Journal of Engineering Research, Vol. 2, Issue 4, June-July, (2014)
[22]Dabrowski L. and Paczkowski T.Computer simulation of two dimensional Electrolyte flow in Electrochemical Machining. Russian journal of electrochemistry, 41、102–110 (2011)
[23]FLUENT 15.0 流體仿真計算從入門到精通,2015年
[24]R. VAN Tijum and P.T. Pajak, “Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process, Philips Consumer Lifestyle, Advanced Technology Center,(2008)
[25]Rui Wu, Danwen Zhang and Juan Sun, “3-D Flow Flied of Cathode Design for NC Presision Electrochemical Machining Integer Impeller Based on CFD, Research Journal of Applied Sciences, Engineering and Technology, 1007-1013, (2011)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top