跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鈺葶
研究生(外文):Yu-TingLin
論文名稱:前置期間對於企業風險恢復力之影響
論文名稱(外文):The Effect of Order Replenishment Lead-time on Supply Chain Resilience Performance under Supply Disruption
指導教授:張巍勳
指導教授(外文):Wei-Shiun Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:國際經營管理研究所碩士在職專班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:60
中文關鍵詞:供應鏈災後復原前置期間災前預防災中應變災後復原風險擴散動態系統自動控制模擬
外文關鍵詞:Supply Chain ResilienceReadinessResponsivenessRecoveryImpact PropagationReplenishment Lead-timeSystem DynamicsAPIOBPCS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
有鑒於近年全球環境日趨動盪及區域經濟整合已為發展趨勢,單一的突發事件之發生就可能造成全球供應鏈斷鍊危機,因而全世界所有企業無一可置身在供應風險(Supply Risk)之外;在此多變且高度敏感的時代,有效風險管理已為全球課題:如何建置一套緊急應變計畫,讓供應鏈在突發事件發生時可在最短時間內復原,是全球企業提升競爭優勢的一重大利器。
本研究主要是在探討訂購交期長短造成供應鏈韌性(Supply Chain Resilience)差異,在突發事件發生時,供應鏈成員面對無預警的交期失敗的抵禦能力及適應能力。供應鏈韌性表現在本文分為四階段:突發事件的事前準備程度、事中應變能力、事後恢復速度及衝擊擴大程度,透過電腦模擬多階供應鏈之庫存動態,比較不同交貨期供應鏈在此四階段之表現優劣。研究結果主要發現如下:(ㄧ)交期偏長的企業有較好的災難初期抵禦能力,但其適應能力及復原速度則相對較弱。(二)交期較長的供應鏈之災情擴散程度(缺貨期長短)比交期較短的供應鏈高。(三)由突發事件導致的訂購量異常會拖累企業的應變能力及復原速度。
Supply chain disruption resilience is getting more attention due to its significant importance in increasing complex and competitive economies. However, the studies regarding the factors that affect the firms’ resilience performance remain sparse. This research aims to gain more insights about the impact of suppliers’ replenishment lead-time, one of the intrinsic supply chain network characteristics, on supply chain resilience upon unexpected disruptive events, e.g. shipment failure. By modeling supply chain system dynamics with multi-echelon design, we have acquired in-depth understanding on the system-wide effects resulted from upstream shipment failure within various supply chains characterized with different average lead-times. We examine the influence of lead-time on resilience performance based on four measurements, namely readiness, response effectiveness, recovery rate (firm level) and impact propagation (supply chain level). The simulation result shows that the supply lead-time is positively related to readiness, yet negatively related to response effectiveness and recovery speed. It also demonstrates that without any contingency strategy taken place, larger impact (stockout duration) exists in the supply chains with longer replenishment lead-time and propagates from upstream to downstream.
ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER ONE INTRODUCTION 1
1.1 Research Background. 1
1.2 Research Motivation. 2
1.3 Research Objectives. 3
1.4 Research Structure. 4
CHAPTER TWO LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT 5
2.1 Theoretical Background. 5
2.1.1 Risk Dynamics. 5
2.1.2 Supply Chain Robustness. 6
2.2 Literature Review. 7
2.2.1 Linking Lead-time and Enterprise Operation. 7
2.2.2 Linking Lead-time and Supply Chain Performance. 9
2.3 Hypothesis Development. 12
2.3.1 Understanding Supply Chain Resilience (SCRES). 13
2.3.2 Assessing Supply Chain Resilience (SCRES). 16
2.3.3 The Influence of Lead-time on Robustness of SCRES. 18
2.3.4 The Influence of Lead-time on Agility of SCRES. 19
CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 24
3.1 SCRES Performance Metrics. 24
3.2 Simulation Framework. 27
3.2.1 Supply Chain Configuration. 27
3.2.2 The Discrete Events System Dynamics Model. 29
3.2.3 Supply Disruption. 33
CHAPTER FOUR RESEARCH RESULTS 36
4.1 Evaluating SCRES Performance on 3Rs. 36
4.2 Evaluating SCRES Performance on Impact Propagation. 40
4.3 Investigating The Changes of Order Rate After Supply Disruption. 42
4.4 Investigating The Effect of Order Amplification on SCRES Performance. 43
4.5 Investigating The Influence of Replenishment Lead-time on The Effectiveness of Contingency Plan. 45
CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS 48
5.1 Main Findings and Discussions. 48
5.2 Research Limitations and Future Research Directions. 49
5.3 Research Contributions. 50
REFERENCES 51
APPENDICES 58
Appendix A: Simulation Parameters Setting 58
Appendix B: The APVIOBPCS Block Diagram in Simulink© 59
于晓宇, 陈依, & 马浩博. (2011). 基于非线性控制理论的突发需求订货策略研究. 工业工程与管理, 16(5), 48-52.
Agrawal, S., Sengupta, R. N., & Shanker, K. (2009). Impact of information sharing and lead time on bullwhip effect and on-hand inventory. European Journal of Operational Research, 192(2), 576-593.
Albino, V., Garavelli, A. C., & Okogbaa, O. G. (1998). Vulnerability of production systems with multi-supplier network: A case study. International Journal of Production Research, 36(11), 3055-3066.
Bagchi, U., Hayya, J. C., & Chu, C.-H. (1986). The effect of lead-time variability: The case of independent demand. Journal of Operations Management, 6(2), 159-177.
Barroso, A., Machado, V., Carvalho, H., & Machado, V. C. (2015). Quantifying the supply chain resilience. In H. T. a. A. Erturk (Ed.), Applications of Contemporary Management Approaches in Supply Chains (pp. 13-38). Rijeka, Croatia: InTech.
Basole, R. C., & Bellamy, M. A. (2014). Supply network structure, visibility, and risk diffusion: A computational approach. Decision Sciences, 45(4), 753-789.
Bing, L., Akintoye, A., Edwards, P. J., & Hardcastle, C. (2005). The allocation of risk in PPP/PFI construction projects in the UK. International Journal of Project Management, 23(1), 25-35.
Bode, C., & Wagner, S. M. (2015). Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions. Journal of Operations Management, 36(0), 215-228.
Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733-752.
Chatfield, D. C., Hayya, J. C., & Cook, D. P. (2013). Stockout propagation and amplification in supply chain inventory systems. International Journal of Production Research, 51(5), 1491-1507.
Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46(3), 436-443.
Chopra, S., Reinhardt, G., & Dada, M. (2004). The effect of lead time uncertainty on safety stocks. Decision Sciences, 35(1), 1-24.
Christopher, M., & Peck, H. (2004). Building the resilient supply chain. The International Journal of Logistics Management, 15(2), 1-14.
Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a global sourcing context. Production Planning & Control, 21(7), 680-694.
Croson, R., & Donohue, K. (2006). Behavioral causes of the bullwhip effect and the observed value of inventory information. Management Science, 52(3), 323-336.
Croson, R., Donohue, K., Katok, E., & Sterman, J. (2014). Order stability in supply chains: Coordination risk and the role of coordination stock. Production and Operations Management, 23(2), 176-196.
De Treville, S., Shapiro, R. D., & Hameri, A.-P. (2004). From supply chain to demand chain: The role of lead time reduction in improving demand chain performance. Journal of Operations Management, 21(6), 613-627.
Dejonckheere, J., Disney, S. M., Lambrecht, M. R., & Towill, D. R. (2003). Measuring and avoiding the bullwhip effect: A control theoretic approach. European Journal of Operational Research, 147(3), 567-590.
Disney, S. M., & Towill, D. R. (2002). A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain. International Journal of Production Research, 40(1), 179-204.
Disney, S. M., & Towill, D. R. (2003a). The effect of vendor managed inventory (VMI) dynamics on the bullwhip effect in supply chains. International Journal of Production Economics, 85(2), 199-215.
Disney, S. M., & Towill, D. R. (2003b). On the bullwhip and inventory variance produced by an ordering policy. Omega, 31(3), 157-167.
Disney, S. M., & Towill, D. R. (2005). Eliminating drift in inventory and order based production control systems. International Journal of Production Economics, 93(0), 331-344.
Ellis, S. C., Henry, R. M., & Shockley, J. (2010). Buyer perceptions of supply disruption risk: A behavioral view and empirical assessment. Journal of Operations Management, 28(1), 34-46.
Finke, G. R., Singh, M., & Schönsleben, P. (2012). Production lead time variability simulation-insights from a case study. International Journal of Industrial Engineering, 19(5), 213-220.
Forrester, J. W. (1968). Industrial dynamics-after the first decade. Management Science, 14(7), 398-415.
Geary, S., Disney, S. M., & Towill, D. R. (2006). On bullwhip in supply chains—Historical review, present practice and expected future impact. International Journal of Production Economics, 101(1), 2-18.
Ghadge, A., Dani, S., & Kalawsky, R. (2012). Supply chain risk management: Present and future scope. The International Journal of Logistics Management, 23(3), 313-339.
Guertler, B., & Spinler, S. (2015). Supply risk interrelationships and the derivation of key supply risk indicators. Technological Forecasting and Social Change, 92(0), 224-236.
Hendricks, K. B., & Singhal, V. R. (2005). An empirical analysis of the effect of supply chain disruptions on long‐run stock price performance and equity risk of the firm. Production and Operations Management, 14(1), 35-52.
Hoberg, K., Bradley, J. R., & Thonemann, U. W. (2007). Analyzing the effect of the inventory policy on order and inventory variability with linear control theory. European Journal of Operational Research, 176(3), 1620-1642.
Hopkins, K. (2003, January 13). Value opportunity three: Improving the ability to fulfill demand. Business Week.
Hussain, M., Drake, P. R., & Myung Lee, D. (2012). Quantifying the impact of a supply chain's design parameters on the bullwhip effect using simulation and Taguchi design of experiments. International Journal of Physical Distribution & Logistics Management, 42(10), 947-968.
Hussain, M., Khan, M., & Sabir, H. (2016). Analysis of capacity constraints on the backlog bullwhip effect in the two-tier supply chain: A Taguchi approach. International Journal of Logistics Research and Applications, 19(1), 41-61.
Ishfaq, R. (2012). Resilience through flexibility in transportation operations. International Journal of Logistics Research and Applications, 15(4), 215-229.
Johnson, N., Elliott, D., & Drake, P. (2013). Exploring the role of social capital in facilitating supply chain resilience. Supply Chain Management: An International Journal, 18(3), 324-336.
Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: An empirical study. Supply Chain Management: An International Journal, 16(4), 246-259.
Jüttner, U., Peck, H., & Christopher, M. (2003). Supply chain risk management: Outlining an agenda for future research. International Journal of Logistics: Research and Applications, 6(4), 197-210.
Kim, J. G., Chatfield, D., Harrison, T. P., & Hayya, J. C. (2006). Quantifying the bullwhip effect in a supply chain with stochastic lead time. European Journal of Operational Research, 173(2), 617-636.
Kleindorfer, P. R., & Saad, G. H. (2005). Managing disruption risks in supply chains. Production and Operations Management, 14(1), 53-68.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997). The bullwhip effect in supply chains. MIT Sloan Management Review, 38(3), 93.
Lee, H. L., Padmanabhan, V., & Whang, S. (2004). Information distortion in a supply chain: The bullwhip effect. Management Science, 50(12_supplement), 1875-1886.
Lindell, M. K., Prater, C., & Perry, R. W. (2006). Wiley pathways introduction to emergency management. New York, USA: John Wiley & Sons.
Lu, Y., Song, J.-S., & Yao, D. D. (2003). Order fill rate, leadtime variability, and advance demand information in an assemble-to-order system. Operations Research, 51(2), 292-308.
Luong, H. T., & Phien, N. H. (2007). Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process. European Journal of Operational Research, 183(1), 197-209.
Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management. Journal of Business Logistics, 29(1), 133-155.
Maria Jesus Saenz, P., Xenophon Koufteros, D., Hohenstein, N.-O., Feisel, E., Hartmann, E., & Giunipero, L. (2015). Research on the phenomenon of supply chain resilience: A systematic review and paths for further investigation. International Journal of Physical Distribution & Logistics Management, 45(1/2), 90-117.
Melnyk, S. A., Davis, E. W., Spekman, R. E., & Sandor, J. (2010). Outcome-driven supply chains. MIT Sloan Management Review, 51(2), 33.
Nair, A., & Vidal, J. M. (2011). Supply network topology and robustness against disruptions– An investigation using multi-agent model. International Journal of Production Research, 49(5), 1391-1404.
Neiger, D., Rotaru, K., & Churilov, L. (2009). Supply chain risk identification with value-focused process engineering. Journal of Operations Management, 27(2), 154-168.
Peterson, R., & Silver, E. A. (1979). Decision systems for inventory management and production planning. New York, USA: John Wiley & Sons.
Pettit, T. J. (2008). Supply chain resilience: development of a conceptual framework, an assessment tool and an implementation process. The Ohio State University, Columbus, USA.
Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: Development and implementation of an assessment tool. Journal of Business Logistics, 34(1), 46-76.
Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143.
Rao, S., & Goldsby, T. J. (2009). Supply chain risks: a review and typology. The International Journal of Logistics Management, 20(1), 97-123.
Rice, J. B., & Caniato, F. (2003). Building a secure and resilient supply network. Supply Chain Management Review, 7(5), 22-30.
Rumyantsev, S., & Netessine, S. (2007). What can be learned from classical inventory models? A cross-industry exploratory investigation. Manufacturing & Service Operations Management, 9(4), 409-429.
Sarkar, S., & Kumar, S. (2015). A behavioral experiment on inventory management with supply chain disruption. International Journal of Production Economics, 169, 169-178.
Schmidt, W., & Raman, A. (2012). When supply-chain disruptions matter (Vol. 13-006). Boston, MA: Harvard Business School Working Paper.
Schmitt, A. J., & Singh, M. (2012). A quantitative analysis of disruption risk in a multi-echelon supply chain. International Journal of Production Economics, 139(1), 22-32.
Sheffi, Y., & Rice Jr, J. B. (2005). A supply chain view of the resilient enterprise. MIT Sloan Management Review, 47(1), 41.
Simchi-Levi, D., Snyder, L., & Watson, M. (2002). Strategies for uncertain times. Supply Chain Management Review, 6(1), 11-12.
Simon, J., Naim, M. M., & Towill, D. R. (1994). Dynamic analysis of a WIP compensated decision support system. International Journal of Manufacturing System Design, 1(4), 283-297.
So, K. C., & Zheng, X. (2003). Impact of supplier's lead time and forecast demand updating on retailer's order quantity variability in a two-level supply chain. International Journal of Production Economics, 86(2), 169-179.
Song, J.-S. (1994a). The effect of leadtime uncertainty in a simple stochastic inventory model. Management Science, 40(5), 603-613.
Song, J.-S. (1994b). Understanding the lead-time effects in stochastic inventory systems with discounted costs. Operations Research Letters, 15(2), 85-93.
Song, J.-S., Zhang, H., Hou, Y., & Wang, M. (2010). The effect of lead time and demand uncertainties in (r, q) inventory systems. Operations Research, 58(1), 68-80.
Song, J.-S., & Zipkin, P. H. (1996). The joint effect of leadtime variance and lot size in a parallel processing environment. Management Science, 42(9), 1352-1363.
Spiegler, V. L., Naim, M. M., & Wikner, J. (2012). A control engineering approach to the assessment of supply chain resilience. International Journal of Production Research, 50(21), 6162-6187.
Stefan Schaltegger, P. R. B., Dr, Schaltegger, S., & Burritt, R. (2014). Measuring and managing sustainability performance of supply chains: Review and sustainability supply chain management framework. Supply Chain Management: An International Journal, 19(3), 232-241.
Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35(3), 321-339.
Tang, O., & Musa, S. N. (2011). Identifying risk issues and research advancements in supply chain risk management. International Journal of Production Economics, 133(1), 25-34.
Tokar, T. (2010). Behavioural research in logistics and supply chain management. The International Journal of Logistics Management, 21(1), 89-103.
Töyli, H. L., Lauri Ojala, J., Wieland, A., & Marcus Wallenburg, C. (2013). The influence of relational competencies on supply chain resilience: A relational view. International Journal of Physical Distribution & Logistics Management, 43(4), 300-320.
Trkman, P., & McCormack, K. (2009). Supply chain risk in turbulent environments—A conceptual model for managing supply chain network risk. International Journal of Production Economics, 119(2), 247-258.
Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: Definition, review and theoretical foundations for further study. International Journal of Production Research, 53(18), 5592-5623.
Waters, D. (2011). Supply chain risk management: Vulnerability and resilience in logistics. London, England: Kogan Page Publishers.
White, A., & Censlive, M. (2013). Using control theory to optimise profit in APVIOBPCS inventory systems. Journal of Manufacturing Systems, 32(4), 680-688.
White, A. S., & Censlive, M. (2015a). Simulation of three-tier supply chains with product shelf-Life effects. Supply Chain Forum: An International Journal, 16(1), 26-44.
White, A. S., & Censlive, M. (2015b). A state-space model of a three tier APVIOBPCS supply chain. Journal of Modelling in Management, 10(1), 76-104.
Wieland, A., & Marcus Wallenburg, C. (2012). Dealing with supply chain risks. International Journal of Physical Distribution & Logistics Management, 42(10), 887-905.
Wu, D. D., & Olson, D. L. (2013). Computational simulation and risk analysis: An introduction of state of the art research. Mathematical and Computer Modelling, 58(9-10), 1581-1587.
Wu, T., Huang, S., Blackhurst, J., Zhang, X., & Wang, S. (2013). Supply chain risk management: An agent-based simulation to study the impact of retail stockouts. IEEE Transactions on Engineering Management, 60(4), 676-686.
Zhao, K., Kumar, A., Harrison, T. P., & Yen, J. (2011). Analyzing the resilience of complex supply network topologies against random and targeted disruptions. IEEE Systems Journal, 5(1), 28-39.
Zhou, L., Naim, M. M., & Disney, S. M. (2016). The impact of product returns and remanufacturing uncertainties on the dynamic performance of a multi-echelon closed-loop supply chain. International Journal of Production Economics, 183(Part B), 487-502.
Zipkin, P. H. (2000). Foundations of inventory management (Vol. 20): McGraw-Hill New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top