跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳品潔
研究生(外文):Pin-ChiehChen
論文名稱:探討不同因子導致沿岸淹水潛勢—以台灣為例
論文名稱(外文):A risk assessment of coastal inundation resulting from different factors: a case study of Taiwan
指導教授:郭重言郭重言引用關係
指導教授(外文):Chung-Yen Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:105
語文別:英文
論文頁數:82
中文關鍵詞:沿岸淹沒海水面上升極端海水面淹水潛勢圖
外文關鍵詞:Coastal inundationSea level riseExtreme sea levelFlood risk map
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球暖化導致自然災害的頻率跟規模加劇,其中又以太平洋島國面對氣候變遷威脅的脆弱度特別高。氣候變遷所帶來其中一項不可忽視的災害──海平面上升,對人類造成生命及財產的損失,如:沿岸低窪地區的淹水、海水入侵、極端事件頻率增高而使洪水事件更加頻繁、以及濕地的消失等。區域海水面上升、風暴潮、極端高潮位、以及地表垂直變動都有可能導致暫時的或永久地表泛淹,因此,評估上述因子所造成的淹水潛勢對於海岸管理是一個很重要的課題。本研究以台灣為研究區域,結合數值地形模型、驗潮站以及衛星測高所重建的區域海水面變化、水準及GPS站觀測之垂直地表變形、以及最大天文潮模擬2112年沿岸靜態淹水情境。此外,本研究也利用聯合機率法分析驗潮站資料來模擬天文大潮及風暴潮所造成的極端海水面情境,再評估各區淹水之機率。為了避免對淹水潛勢造成高估,本研究採用以區域為分割基準的影像分割法──區域成長法,自地形模型萃取實際的海水淹沒範圍以產生淹水潛勢地圖,可供政府海岸以及土地管理部門制定因應全球氣候變遷相關災害的調適政策。
The Pacific island countries are particularly vulnerable to the effects of global warming that include more frequent and intense natural disasters. Seawater inundation, one of the most serious disasters, could damage human property and life, such as inundation of coastal low-lying area, saltwater intrusion, intense floods due to increasingly frequent extreme events, and loss of wetland. Regional sea level rise, storm surge, extreme high tide, and vertical land motions could result in episodic or permanent coastal inundation, so assessing potential flooding areas due to above mentioned factors is a critical task for coastal management. In this study, a simulation of static flooding scenario in Taiwan at the end of this century was conducted by using Taiwan DEM, regional sea level changes reconstructed by tide-gauge and altimetry data, vertical land deformation derived from leveling and GPS data, and ocean tides from models. In addition, extreme sea level scenario, which typically result from a high water on a spring tide and a storm surge, was also evaluated by the joint probability method using tide gauge records. In order to avoid overestimation of inundation areas, a region-based image segmentation method was employed in the estimated future topographic data to generate the flood risk map. The risk assessment of flooding areas is potentially useful for coastal ocean and land management to develop appropriate adaptation policy for preventing disasters resulting from global climate change.
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Outlines 9
Chapter 2 Study area and Data 10
2.1 Study area 10
2.1.1 Geography of Taiwan 10
2.1.2 Rivers, Estuaries, and Wetlands 12
2.1.3 Typhoons 15
2.2 Data 16
2.2.1 Digital Elevation 16
2.2.2 Sea Level Variations 19
2.2.3 Vertical Land Motions 28
2.2.4 Highest Astronomical Tide 30
Chapter 3 Methodology 33
3.1 Static Flooding 33
3.1.1 Scenarios and Assumptions 33
3.1.2 Region growing algorithm 36
3.2 Extreme sea level 41
3.2.1 Probability of Exceedance and Return Periods 41
3.2.2 Tidal Analysis 44
3.2.3 Direct Joint Probability Method 46
3.3 Flowchart 51
Chapter 4 Results and discussion 52
4.1 Static Flood risk map for Taiwan 52
4.1.1 Scenarios results of inundation 52
4.1.2 Analysis of modified region growing algorithm 60
4.1.3 Wetlands loss 62
4.2 Extreme sea levels of Taiwan 65
4.2.1 Impact on urban areas 69
4.2.2 Land use assessment 71
Chapter 5 Conclusions and Recommendations 74
Adams, R., Bischof, L., 1994. Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on 16, 641-647.
Bins, L.S.a., Fonseca, L.M.G., Erthal, G.J., Ii, F.M., 1996. Satellite imagery segmentation: a region growing approach. Simpósio Brasileiro de Sensoriamento Remoto 8, 677-680.
Cheng, Y., Andersen, O.B., 2011. Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans 116.
Ching, K.-E., Hsieh, M.-L., Johnson, K.M., Chen, K.-H., Rau, R.-J., Yang, M., 2011. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research 116.
Chust, G., Caballero, A., Marcos, M., Liria, P., Hernández, C., Borja, Á., 2010. Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century. Estuarine, Coastal and Shelf Science 87, 113-124.
Ericson, J.P., Vörösmarty, C.J., Dingman, S.L., Ward, L.G., Meybeck, M., 2006. Effective sea-level rise and deltas: causes of change and human dimension implications. Global and Planetary Change 50, 63-82.
Feng, J., Storch, H.v., Jiang, W., Weisse, R., 2015. Assessing changes in extreme sea levels along the coast of China.
FitzGerald, D.M., Fenster, M.S., Argow, B.A., Buynevich, I.V., 2008. Coastal Impacts Due to Sea-Level Rise. Annual Review of Earth and Planetary Sciences 36, 601-647.
Ge, X., Li, T., Zhang, S., Peng, M., 2010. What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmospheric Science Letters 11, 46-50.
Gesch, D.B., 2009. Analysis of Lidar Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise. Journal of Coastal Research 10053, 49-58.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., Chateau, J., 2011. A global ranking of port cities with high exposure to climate extremes. Climatic Change 104, 89-111.
Hsu, T.-W., Lin, T.-Y., Tseng, I.-F., 2007. Human impact on coastal erosion in Taiwan. Journal of Coastal Research, 961-973.
Hsu, W.-K., Huang, P.-C., Chang, C.-C., Chen, C.-W., Hung, D.-M., Chiang, W.-L., 2011. An integrated flood risk assessment model for property insurance industry in Taiwan. Natural Hazards 58, 1295-1309.
IPCC, 2007. Climate change 2007: the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press.
IPCC, 2013. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. K., Tignor, M., Allen, SK, Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, PM, Eds, 1535.
Ismail, N., 2011. Assessment of recent coastal flooding in Alexandria and future outlook for the Nile Delta, Geophysical Research Abstracts, pp. 3-8.
IWPDC, 2000. International Water Power and Dam Construction Yearbook 2000. Wilmington Publishing Ltd.
Joan C. Liu; Barbara J. Lence, A.M.A.a.M.I., F.ASCE, 2010. Direct Joint Probability Method for Estimating Extreme Sea Levels.
Kirshen, P., Knee, K., Ruth, M., 2008. Climate change and coastal flooding in Metro Boston: impacts and adaptation strategies. Climatic Change 90, 453-473.
Lin, K.C., Hu, J.C., Ching, K.E., Angelier, J., Rau, R.J., Yu, S.B., Tsai, C.H., Shin, T.C., Huang, M.H., 2010. GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan. Journal of Geophysical Research: Solid Earth 115.
Liu, S., 1997. Using coastal models to estimate effects of sea level rise. Ocean & Coastal Management 37, 85-94.
Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., Savenije, H., 2011. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, Parts A/B/C 36, 241-252.
Matsumoto, K., Takanezawa, T., Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography 56, 567-581.
McGranahan, G., Balk, D., Anderson, B., 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization 19, 17-37.
Menéndez, M., Woodworth, P.L., 2010. Changes in extreme high water levels based on a quasi‐global tide‐gauge data set. Journal of Geophysical Research: Oceans 115.
Michael, J.A., 2007. Episodic flooding and the cost of sea-level rise. Ecological economics 63, 149-159.
NAPHM, 2002. Integrated Analyses and Discussion for Typhoon Nari Disasters and Emergency Operation Plan.
Nicholls, R.J., 1995. Coastal megacities and climate change. GeoJournal 37, 369-379.
Nicholls, R.J., Hoozemans, F.M., Marchand, M., 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change 9, S69-S87.
Poulter, B., Halpin, P.N., 2008. Raster modelling of coastal flooding from sea‐level rise. International Journal of Geographical Information Science 22, 167-182.
Pugh, D., Vassie, J., 1980. Applications of the joint probability method for extreme sea level computations. Proceedings of the Institution of Civil Engineers 69, 959-975.
Schwartz, M., 2006. Encyclopedia of coastal science. Springer Science & Business Media.
Schwiderski, E.W., 1980. Ocean tides: a hydrodynamic interpolation model. Marine Geodesy 3, 219-255.
Su, M.-D., Kang, J.-L., Chang, L.-F., Chen, A.S., 2005. A grid-based GIS approach to regional flood damage assessment. Journal of Marine Science and Technology 13, 184-192.
Tawn, J., Vassie, J., 1989. Extreme sea levels: the joint probabilities method revisited and revised.
Teng, W.-H., Hsu, M.-H., Wu, C.-H., Chen, A.S., 2006. Impact of Flood Disasters on Taiwan in the Last Quarter Century. Natural Hazards 37, 191-207.
Tseng, Y.-H., Breaker, L.C., Chang, E.T.-Y., 2010. Sea level variations in the regional seas around Taiwan. Journal of Oceanography 66, 27-39.
Tsimplis, M., Woodworth, P., 1994. The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. Journal of Geophysical Research: Oceans 99, 16031-16039.
Ward, P.J., Marfai, M.A., Yulianto, F., Hizbaron, D.R., Aerts, J.C.J.H., 2010. Coastal inundation and damage exposure estimation: a case study for Jakarta. Natural Hazards 56, 899-916.
Watson, C.S., White, N.J., Church, J.A., King, M.A., Burgette, R.J., Legresy, B., 2015. Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change 5, 565-568.
Woodworth, P.L., Blackman, D.L., 2004. Evidence for systematic changes in extreme high waters since the mid-1970s. Journal of Climate 17, 1190-1197.
Wunsch, C., Ponte, R.M., Heimbach, P., 2007. Decadal Trends in Sea Level Patterns: 1993–2004. Journal of Climate 20, 5889-5911.
Yin, J., Yin, Z., Wang, J., Xu, S., 2012. National assessment of coastal vulnerability to sea-level rise for the Chinese coast. Journal of Coastal Conservation 16, 123-133.
Zhang, K., Douglas, B.C., Leatherman, S.P., 2000. Twentieth-Century Storm Activity along the U.S. East Coast. Journal of Climate 13, 1748-1761.
林勝豐, 馬名軍, 陳進益, 羅聖宗, 滕春慈, 2014. 臺灣周圍海域潮位模擬結果比對分析, 天氣分析與預報研討會.
姜介中, 2009. 利用驗潮記錄估計臺灣沿岸地表垂直運動, 國立臺灣大學理學院海洋研究所碩士論文, 台北.
施學銘, 1994. 全球海水面上升的衝擊. 臺灣地區氣候變遷因素及其影響研討會論文集, P.104-114.
廖貞如, 2010. 從大地水準面及地形推估地面淹水狀況; Using gravity geoid and topography data to retrieve surface flooding scenarios.
盧鏡臣, 陳永明, 張志新, 郭彥廉, 2009. 台灣在氣候及環境變遷下之淹水風險評估—鄉鎮層級的評估.
糠瑞林, 2005. 區域淹水災害風險評估及其未確定性分析, 生物環境系統工程學研究所. 臺灣大學, pp. 1-113.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top