|
[1] Frequent itemset mining dataset repository. In http://fimi.ua.ac.be/data, 2004. [2] Apache mahout. In http://mahout.apache.org/, 2015. [3] Apache hadoop. In http://hadoop.apache.org/, 2017. [4] Apache spark. In https://spark.apache.org/, 2017. [5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016. [6] F. Bodon. A fast apriori implementation. In Proceedings of the IEEE ICDM workshop on frequent itemset mining implementations (FIMI’03), volume 90, 2010. [7] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information heterogeneity and fusion in recommender systems. In Proc. of the ACM Conf. on Recommender systems, RecSys, 2011. [8] C.-C. Chen, C.-Y. Tseng, and M.-S. Chen. Highly scalable sequential pattern mining based on mapreduce model on the cloud. In IEEE International Congress on Big Data, pages 310–317. IEEE, 2013. [9] H. Chen, T. Y. Lin, Z. Zhang, and J. Zhong. Parallel mining frequent patterns over big transactional data in extended mapreduce. In Granular Computing (GrC), IEEE International Conference on, pages 43–48. IEEE, 2013. [10] K.-T. Chuang, J.-L. Huang, and M.-S. Chen. Mining top-k frequent patterns in the presence of the memory constraint. The VLDB Journal, 17(5):1321–1344, 2008. [11] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008. [12] F. Geerts, B. Goethals, and J. V. D. Bussche. Tight upper bounds on the number of candidate patterns. ACM Transactions on Database Systems (TODS), 30(2):333–363, 2005. [13] A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan. Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 334–342. ACM, 2011. [14] B. Goethals. Memory issues in frequent itemset mining. In Proceedings of the 2004 ACM symposium on Applied computing, pages 530–534. ACM, 2004. [15] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge, and A. Veitch. In-memory performance for big data. Proceedings of the VLDB Endowment, 8(1):37–48, 2014. [16] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul. Ecomark: evaluating models of vehicular environmental impact. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pages 269–278. ACM, 2012. [17] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules, volume 26. ACM, 1997. [18] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In ACM Sigmod Record, volume 29, pages 1–12. ACM, 2000. [19] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. PFP: parallel fp-growth for query recommendation. In Proceedings of the ACM conference on Recommender systems, pages 107–114. ACM, 2008. [20] L. Li and M. Zhang. The strategy of mining association rule based on cloud computing. In International Conference on Business Computing and Global Informatization, pages 475–478. IEEE, 2011. [21] N. Li, L. Zeng, Q. He, and Z. Shi. Parallel implementation of apriori algorithm based on mapreduce. In Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD) 13th ACIS International Conference on, pages 236–241. IEEE, 2012. [22] K. Lin, J. Xu, I. M. Baytas, S. Ji, and J. Zhou. Multi-task feature interaction learning. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1735–1744. ACM, 2016. [23] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh. Apriori-based frequent itemset mining algorithms on mapreduce. In Proceedings of the 6th international conference on ubiquitous information management and communication, page 76. ACM, 2012. [24] S. Moens, E. Aksehirli, and B. Goethals. Frequent itemset mining for big data. In Big Data IEEE International Conference on, pages 111–118. IEEE, 2013. [25] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules, volume 24. ACM, 1995. [26] B. T. Rao, N. Sridevi, V. K. Reddy, and L. Reddy. Performance issues of heterogeneous hadoop clusters in cloud computing. arXiv preprint arXiv:1207.0894, 2012. [27] H. P. Vanchinathan, A. Marfurt, C.-A. Robelin, D. Kossmann, and A. Krause. Discovering valuable items from massive data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1195–1204. ACM, 2015. [28] J.Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering, 17(5):652–663, 2005. [29] H. Yang, R. Fujimaki, Y. Kusumura, and J. Liu. Online feature selection: A limited-memory substitution algorithm and its asynchronous parallel variation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1945–1954. ACM, 2016. [30] X. Y. Yang, Z. Liu, and Y. Fu. Mapreduce as a programming model for association rules algorithm on hadoop. In Information Sciences and Interaction Sciences (ICIS) 3rd International Conference on, pages 99–102. IEEE, 2010. [31] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation. PVLDB, 5(9):896–907, 2012. [32] C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset mining. Proceedings of the VLDB Endowment, 6(1):25–36, 2012. [33] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 401–406. ACM, 2001. [34] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Z. Huang, and S. Feng. Balanced parallel fp-growth with mapreduce. In Information Computing and Telecommunications (YC-ICT) IEEE Youth Conference on, pages 243–246. IEEE, 2010.
|