(3.237.178.91) 您好!臺灣時間:2021/03/02 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張育源
研究生(外文):Yu-YuanChang
論文名稱:四點彎曲試驗下砂岩之複合型斷裂韌度與其基本力學性質之研究
論文名稱(外文):A Study of the Measurement of Mixed Modes Fracture Toughness under Four-Point Bending Test and Basic Mechanical Properties of Sandstones
指導教授:王建力王建力引用關係
指導教授(外文):Chein-Lee Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:143
中文關鍵詞:砂岩四點彎曲試驗複合型斷裂韌度
外文關鍵詞:SandstonesFour-Point bending testMixed-mode fracture toughness
相關次數:
  • 被引用被引用:1
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用砂岩為試驗材料,將此材料製備成單裂縫矩型試體,以施加的跨距變化作為操作變因進行四點彎曲試驗並將不同跨距與破壞應力帶入推導公式,求得複合型破裂韌度。
本研究發現不同跨距會產生不同K值的破壞。I-II型部分三種跨距會各別產生純I型、I-II複合型與純II型破壞。II-III型部分KII值與KIII值均會依不同的跨距設計而有所變化。斷裂面粗糙度部分,I-II型部分隨著純I型、I-II複合型與純II型先下降後上升,II-III型部分的粗糙度與不同的跨距設計無明顯關聯。I-II型與II-III型兩者斷裂面上都帶有與施力方向相同的細微帶狀溝槽。
To measure the mixed-mode fracture toughness of rocks, single edge-cracked bending specimens under four-point bending configurations were proposed in this study. Sandstones were selected as the testing materials. Two different experimental setups of four-point bending tests for modes I-II and II-III, respectively, were carried out in this study. There were three loading conditions for measuring the mode I-II fracture toughness and also three loading conditions for measuring the mode II-III fracture toughness. Theoretical formulas developed by Wang et al. (1979) for mode I-II fracture toughness and Tohgo et al. (1986) for mode II-III fracture toughness were adopted in the study. A series of experiments were conducted on these specimens. Correlations between mixed-mode fracture toughness and other mechanical properties were also discussed in this study. In addition to mixed-mode fracture toughness, experimental results include uniaxial compressive strength, dynamic Young’s modulus, dynamic Poisson’s ratio, and surface roughness. For the cases of mode I-II testing, the loading conditions were chosen so that three fracture modes which were pure mode I, mode I-II, and pure mode II were achieved. It is observed that the surface roughness in pure mode II loading is higher than that in pure mode I loading while the surface roughness in mode I-II loading is lowest. For the cases of mode II-III testing, it is observed that the mode II fracture toughness is proportional to the mode III fracture toughness under three loading conditions. However, the measured surface roughness in mode II-III testing apparently did not show any relevance in three loading conditions. Slight grooves with the same direction as the loading direction on the fracture surface were observed at both modes I-II and II-III tests
摘要(I)
Extended Abstract(II)
誌謝(XIV)
目錄(XV)
表目錄(XVII)
圖目錄(XVIII)
第一章 緒論(1)
1.1 研究背景與動機(1)
1.2 研究目的與內容(1)
第二章 文獻回顧(4)
2.1斷裂力學發展(4)
2.2斷裂力學基本理論(5)
2.3斷裂力學相關研究(14)
2.3.1 I型斷裂(14)
2.3.2 II型斷裂(17)
2.3.3 III型斷裂(20)
2.4複合型斷裂力學相關研究(26)
2.4.1 I-II型斷裂(26)
2.4.2 II-III型斷裂(36)
2.5本研究室歷屆斷裂力學相關研究(44)
2.5.1 I型斷裂(44)
2.5.2 II型斷裂(45)
2.5.3 III型斷裂(50)
2.5.4複合型斷裂(54)
2.6小結與綜合比較(59)
第三章 研究設備與試驗方法(63)
3.1試驗規劃(63)
3.2斷裂韌度試驗公式(64)
3.2.1 I型、II型與I-II型斷裂(64)
3.2.2 II-III型斷裂(66)
3.3試體材料與製備(68)
3.3.1砂岩組成與特性(68)
3.3.2試體製備(69)
3.4試驗設備(71)
3.4.1載重控制系統(71)
3.4.2動力系統(72)
3.4.3載重系統(72)
3.4.4資料擷取系統(73)
3.4.5試體製備儀器(74)
3.4.6試體量測儀器(76)
3.5試驗方式(78)
3.5.1超音波量測試驗(78)
3.5.2單軸抗壓試驗(79)
3.5.3四點彎曲試驗(80)
3.5.4裂縫開口位移量測試驗(81)
3.5.5斷裂面粗糙度量測試驗(82)
第四章 結果與討論(83)
4.1四點彎曲試驗(83)
4.1.1 I-II型斷裂(83)
4.1.2 II-III型斷裂(90)
4.2基本物理性質(96)
4.2.1單軸抗壓試驗(96)
4.2.2超音波量測(96)
4.2.3粗糙度量測(97)
第五章 結論與建議(101)
5.1結論(101)
5.2建議(102)
參考文獻(103)
附錄A 砂岩試體破壞樣態(111)
附錄B 四點彎曲試驗下試體加壓歷時與開口位移歷時(119)
附錄C 砂岩斷裂面樣態(134)
1. 王凱正,「以單壓雙裂縫試驗量測石膏Ⅱ型破裂韌度之研究」,國立成功大學資源工程學系碩士論文,2007。
2. 宋勝榮,「台灣大百科全書」,文化部,2009。
3. 周威霆,「邊緣裂縫圓盤石膏III型斷裂韌度量測之研究」,國立成功大學資源工程學系碩士論文,2012。
4. 林昆慶,「以矩形板試體求取花崗岩石材I型破裂韌度之研究」,國立成功大學資源工程學系碩士論文,2008。
5. 林家煌,「以剪切盒試驗求取花崗岩石材I型破壞韌度之研究」,國立成功大學資源工程學系碩士論文,2008。
6. 帥玉康,「以平板彎曲試驗求取石材 III 型破裂韌度之研究」,國立成功大學資源工程學系碩士論文,2008。
7. 莊翌君,「以剪切盒試驗量測石膏ΙΙ型破裂韌度之研究」,國立成功大學資源工程學系碩士論文,2007。
8. 郭俊志,「砂岩與壓克力複合型裂紋擴展機制之研究」,國立成功大學資源工程學系碩士論文,2009。
9. 陳志豪,「複合楔形體之反平面剪力變形分析」,國立成功大學資源工程學系博士論文,2009。
10. 陳思瑩,「超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究」,國立成功大學資源工程學系碩士論文,2012。
11. 陳楠輝,「邊緣裂縫圓盤岩石試體III型斷裂韌度量測之研究」,國立成功大學資源工程學系碩士論文,2014。
12. 張群和,「高溫環境下高鋁水泥之III型斷裂韌度量測與其基本力學性質之研究」,國立成功大學資源工程學系碩士論文,2016。
13. 蔡家偉,「以雙裂縫試驗量測膠結石膏II型破裂韌度之研究」,國立成功大學資源工程學系碩士論文,2008。
14. 賴俊仁,「四點彎曲作用下花崗岩混合模式破裂韌度量測之研究」,國立成功大學資源工程學系碩士論文,2000。
15. 賴禹村,「硫酸鈉溶液環境下飛灰水泥基本力學性質之研究」,國立成功大學資源工程學系碩士論文,2010。
16. 謝其泰,「石材裂紋擴展量測之研究」,國立成功大學資源工程學系碩士論文,2003。
17. 謝海峰、饒秋華、王志,「反平面剪切(III型)加載下脆性岩石的斷口分析」,岩石力學與工程學報,第26卷,第9期,2007。
18. Agnihotri, S.K., V. Parameswaran, “Mixed-mode fracture of layered plates subjected to in-plane bending, Int J Fract 197:63-79, 2016.
19. Aliha, M.RM., A. Bahmani, S. Akhondi, “Determination of mode III fracture toughness for different materials using a new designed test configuration, Materials and Design, 86, 863–871, 2015.
20. Anderson, T.L., “Fracture mechanics fundamental and applications, CRC Press, 1991.
21. Asgari, F., Mehrabadi, “Analysis of pure mode III and mixed mode (III + II) interlaminar crack growth in polymeric woven fabrics, Materials and Design 44, 429–437, 2013.
22. Ayatollahi, M.R., M. Dehghany, Z. Kaveh, “Computation of V-notch shape factors in four-point bend specimen for fracture tests on brittle materials, Arch Appl Mech 83:345-356, 2012
23. Ayatollahi, M.R., M.R.M. Aliha, “On the use of an anti-symmetric four-point bend specimen for mode II fracture experiments, Fatigue Fract Engng Mater Struct 34, 898–907, 2011.
24. Ballatore, E., A. Carpinteri, G. Ferrara, G. Melchiorri, “Mixed mode fracture energy of concrete, Engineering Fracture Mechanics Vol. 35, No. 1/2/3, pp. 145-157, 1990.
25. Campagnolo, A., F. Berto, “Three-dimensional effects on cracked discs and plates under nominal Mode III loading, A. Campagnolo et alii, Frattura ed Integrità Strutturale, 34, 190-199, 2015.
26. Canturri, C., E.S. Greenhalgh, S.T. Pinho, “The relationship between mixed-mode II/III delamination and delamination migration in composite laminates, Composites Science and Technology, 105, 102–109, 2014.
27. Davidson, B.D., F.O. Sediles, “Mixed-mode I–II–III delamination toughness determination via a shear–torsion-bending test, Composites: Part A, 42,589–603, 2011.
28. Dong, W., Z. Wu, X. Zhou, “Fracture mechanisms of rock-concrete interface: experimental and numerical, J. Eng. Mech., 142(7): 04016040, 2016.
29. Dourado, N., M. F. S. F. de Moura, J. Xavier, F. A. M. Pereira, “A new procedure for mode I fracture characterization of cement-based materials, Wiley Publishing Ltd, Strain, 51,483-491, 2015.
30. Ge, Y., X. Gong, A. Hurez, E.D. Luycker, “Test methods for measuring pure mode III delamination toughness of composite, Polymer Testing, 55,261-268, 2016.
31. Johnston, A.L., B.D. Davidson, “Intrinsic coupling of near-tip matrix crack formation to mode III delamination advance in laminated polymeric matrix composites, International Journal of Solids and Structures, 51, 2360–2369, 2014.
32. Kostopoulos1, V., A. Kotrotsos, A. Baltopoulos, S. Tsantzalis, P. Tsokanas, T. Loutas, A. W. Bosman, “Mode II fracture toughening and healing of composites using supramolecular polymer interlayers, eXPRESS Polymer Letters Vol.10, No.11, 914–926, 2016.
33. Lazarus, V., F.G. Buchholz, M. Fulland, J. Wiebesiek, “Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments, Int J Fract 153:141-151, 2008.
34. Lee,S.M., “An edge crack torsion method for mode III delamination fracture testing,Journal of composites technology & Research, ASTM, 1993.
35. López-Menénde, A., J. Viña1, A. Argüelles, S. Rubiera, V. Mollón, “A new method for testing composite materials under mode III fracture, Journal of Composite Materials, Vol. 50(28), 3973–3980, 2016.
36. Mahanta, B., T.N. Singh, P.G. Ranjith, “Influence of thermal treatment on mode I fracture toughness of certain Indian rocks, Engineering Geology 210, 103–114, 2016.
37. Malíková, L., V. Veselý, S. Seitl, “Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria, International Journal of Fatigue, 89, 99–107, 2016
38. Miura, M., Y. Shindo , T. Takeda, F. Narita, “Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures, Engineering Fracture Mechanics, 96, 615–625, 2012.
39. Morais, A.B, A.B. Pereira, “Mixed mode II + III interlaminar fracture of carbon/epoxy laminates, Composites Science and Technology, 68 , 2022–2027, 2008.
40. Morais, A.B., A.B. Pereira, M.F.S.F. de Moura, A.G. Magalhães, “Mode III interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test, Composites Science and Technology, 69, 670–676, 2009.
41. Pereira, A.B., A.B. de Morais, “Mixed mode I + II interlaminar fracture of carbon/epoxy laminates, Composites: Part A, 39, 322–333, 2007.
42. Pérez-Galmés, M., J. Renart, C. Sarrado, A. Rodríguez-Bellido, J. Costa, “A data reduction method based on the J-integral to obtain the interlaminar fracture toughness in a mode II end-loaded split (ELS) test, Composites: Part A , 90, 670–677, 2016.
43. Rizov, V., “Mixed-mode I/II fracture study of polymer composites using single edge notched bend specimens, Computational Materials Science, 77, 1–6, 2013.
44. Rizov, V., “Mixed-mode II/III fracture in foam core sandwich beams, Cellular Polymers, Vol. 33, No. 6, 287-300 , 2014.
45. Szekrényes, A., “Delamination fracture analysis in the GII–GIII plane using prestressed transparent composite beams, International Journal of Solids and Structures, 44, 3359–3378, 2006.
46. Tohgo, K., A. Otsuka, R. Yuuki, “Fatigue crack growth of a mixed mode three-dimensional crack (1st Report, Analysis of stress intensity factors of mixed mode three-dimensional cracks based on the J-Integral concept), Transactions of the Japan Society of Mechanical Engineers Series A, Vol. 52, No. 476 P 909-918, 1986.
47. Vojtek, T., R. Pippan, A. Hohenwarter, L. Holáň, J. Pokluda, “Near-threshold propagation of mode II and mode III fatigue cracks in ferrite and austenite, Acta Materialia, 61, 4625–4635, 2013.
48. Wang, C., Z.M. Zhu, H.J. Liu, “On the I–II mixed mode fracture of granite using four-point bend specimen, Fatigue Fract Engng Mater Struct, 39, 1193–1203, 2016.
49. Wang, K., J. Xu, H. Gao, “Calculation of stress intensity factors for combined mode bend specimens,Scientia Sinica,Vol.XXII, No.5, 1979.
50. Wei, M.D., F. Dai, N.W. Xu, J.F. Liu, Y. Xu, “Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks, Rock Mech Rock Eng, 49:1595–1609, 2016.
51. Yu, Z., Z. Shan, Z. Ouyang, F. Guo, “A simple damage model for concrete considering irreversible mode-II microcracks, Fatigue Fract Engng Mater Struct, 39, 1419–1432, 2016.
52. Zabala, H., L. Aretxabaleta, G. Castillo, J. Aurrekoetxea, “Dynamic 4 ENF test for a strain rate dependent mode II interlaminar fracture toughness characterization of unidirectional carbon fibre epoxy composites, Polymer Testing, 55, 212-218, 2016.
53. Zappalorto, M., M. Salviato, M. Quaresimin, “Mixed mode (I + II) fracture toughness of polymer nanoclay nanocomposites, Engineering Fracture Mechanics, 111, 50–64, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔