(44.192.112.123) 您好!臺灣時間:2021/03/08 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠全
研究生(外文):Kuan-ChuanChen
論文名稱:兩相流模式數值模擬之研究
論文名稱(外文):The study of numerical modeling for two-phase flow models
指導教授:徐國錦徐國錦引用關係
指導教授(外文):Kuo-Chin Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:兩相流Buckley-Leverett 模式流動機制COMSOL
外文關鍵詞:Two-phase flowBuckley-Leverett modelFlowing mechanismCOMSOL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多相流問題在日常生活中非常常見,並且也是水文地質學中非常重要的一個課題。在多相流問題中,兩相流問題尤其最受廣泛討論,而兩相流為多相流的一個特例。在傳統孔隙介質水流的分析中,大部分情況下只考慮單相流。然而在未飽和帶中,空氣的存在會影響水的流動,在單純只考慮單相流的情境下,水於孔隙介質流動過程中,空氣對水的影響無法看見。一旦水流動受空氣影響,水於孔隙介質的流動過程中,水和空氣即必須被同時考慮。本研究進行兩相流的流動特性分析,兩相流模式採用Buckley-Leverett模式。兩相流模式中,水於孔隙介質流動由三個機制所組成,分別為流動性、重力作用與擴散作用。當不同作用機制被考慮下,水於孔隙介質流動會有不同的特性。兩相流於孔隙介質的分析結果可與單相流結果做比較,單相流與兩相流的數值模擬採用COMSOL數值軟體執行。結果顯示兩相流模式下水於孔隙介質流動對比單相流模式下較為緩慢,而在兩相流模式中考慮不同作用機制下,孔隙介質中水飽和度隨時間的分佈會有顯著的差異。此外,不同機制對於孔隙介質中潮濕峰的移動貢獻亦可由數值模擬分別得出。
Multiphase flow problems are widely used in our life, and they are also important in the hydrogeology. In multiphase problems, two-phase flow problems are discussed the most commonly, and the two-phase flow is a particular case of the multiphase flow. In the traditional analysis of water flow in porous media, the single-phase flow is considered in most cases. In the unsaturated zone, however, the existence of air may influence the flow of water. When the one-phase flow was taken into account, the influence of air is neglected in the flowing process. Since the flow of water is influenced by air, water and air have to be considered simultaneously to analyze the flowing procedure in the porous medium. This study investigates the flowing characteristics of the two-phase flow, and Buckley-Leverett model is chosen as the two-phase flow model. The flow of water in the two-phase flow in the porous medium is composed of three mechanisms including the mobility, the gravity and the diffusion. When the different mechanisms in the two-phase flow are considered, the flow of water has different characteristics in the porous medium. The results of the two-phase flow are compared with that of the one-phase flow using Richards’ equation. The numerical simulations of the one-phase and two-phase flow in this study are conducted by COMSOL. The results demonstrate that the flow of water is slower in the two-phase flow comparing with that in the one-phase flow in the porous medium. Since the different mechanisms are taken into account in the two-phase flow, the distribution of the water saturation by time is quite different in the porous medium. In addition, the contribution to the movement of the wetting front from different mechanisms can be identified in the numerical simulation.
Abstract I
摘要 II
誌謝 III
Content IV
List of Table VII
List of Figure VIII
Notation XII
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Literature review 5
1.3 Flow chart 8
Chapter 2 Methodology 9
2.1 One-phase flow 9
2.1.1 Darcy’s law 9
2.1.2 Richards’ equation 9
2.1.3 Richards’ equation in expressions of the water content 11
2.1.4 Richards’ equation in expressions of the capillary pressure head 12
2.1.5 van Genuchten model 12
2.2 Two-phase flow model 15
2.2.1 Buckley-Leverett model 15
2.2.2 Relative permeability 18
2.2.3 Buckley-Leverett model with the effect of the mobility only 20
2.2.4 Buckley-Leverett model with the effect of the mobility and the gravity 21
2.2.5 Buckley-Leverett model with the effect of the mobility, the gravity and the diffusion 23
2.2.6 Determination of the total flux 24
Chapter 3 Numerical Simulation 25
3.1 COMSOL Multiphysics 25
3.2 Parameters of the fluids and the porous medium for the numerical simulations 25
3.3 One-phase flow 26
3.3.1 Scenario 1 27
3.3.2 Scenario 2 28
3.4 Two-phase flow 29
3.4.1 Scenario 1 29
3.4.2 Scenario 2 30
3.4.3 Scenario 3 30
3.5 Numerical oscillation 31
Chapter 4 Results and Discussions 33
4.1 One-phase flow 33
4.1.1 Scenario 1 37
4.1.2 Scenario 2 42
4.2 Two-phase flow 46
4.2.1 Determination of the total flux 48
4.2.2 Scenario 1 52
4.2.3 Scenario 2 56
4.2.4 Scenario 3 58
4.3 Comparisons of the one-phase and two-phase flow 61
4.4 Sensitivity analysis in the two-phase flow 64
4.4.1 Initial condition 64
4.4.2 Permeability 67
4.5 Contributions to the wetting front for the different mechanisms 68
Chapter 5 Conclusions and Suggestions 73
5.1 Conclusions 73
5.2 Suggestions 74
References 75
1. Akhmetzyanov, A. V., A. G. Kushner and V. V. Lychagin, Mass and heat transport in the two-phase Buckley-Leverett model, Journal of Geometry and Physics, 113, 2-9, 2017.
2. Brakensiek, D. L., Estimating the Effective Capillary Pressure in the Green and Ampt Infiltration Equation, Water Resources Research, 13(3), 680-682, 1977.
3. Brooks, R. H. and A. T. Corey, Hydraulic Properties of Porous Media and Their Relation to Drainage Design, Transactions of the ASAE, 7(1), 26-28, 1964.
4. Buckingham, E., Studies on the movement of soil moisture, USDA Bureau of Soils, 1907.
5. Buckley, S. E. and M. C. Leverett, Mechanism of Fluid Displacement in Sands, Transactions of the AIME, 146(1), 107-116, 1941.
6. Celia, M. A., E. T. Bouloutas and R. L. Zabra, A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation, Water Resources Research, 26(7), 1483-1496, 1990.
7. Chang, J. and Y. C. Yortsos, Effect of Capillary Heterogeneity on Buckley-Leverett Displacement, SPE Reservoir Engineering, 7(2), 285-293, 1992.
8. Chen, J. M., Y. C. Tan, C. H. Chen and J. Y. Parlange, Analytical solutions for linearized Richards equation with arbitrary time-dependent surface fluxes, Water Resources Research, 37(4), 1091-1093, 2001.
9. Cheng, P. and C. Y. Wang, A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-Ⅱ. Numerical simulation of the transport of organic compounds in the subsurface, International Journal of Heat and Mass Transfer, 39(17), 3619-3632, 1996b.
10. Chu, S. T., Infiltration During an Unsteady Rain, Water Resources Research, 14(3), 461-466, 1978.
11. Corey, A. T., The Interrelation Between Gas and Oil Relative Permeabilities, Producers Monthly, 19(1), 38-41, 1954.
12. Ghorbani, M., M. R. Khorsand and M. Masihi, Investigating the Effect of Heterogeneity on Buckley-Leverett Flow Model, Iranian Journal of Oil & Gas Science and Technology, 3(4), 41-54, 2014.
13. Green, W. H. and G. A. Ampt, Studies on Soil Physics, The Journal of Agricultural Science, 4(1), 1-24, 1911.
14. Hicks, P. D., M. J. Cooker and A. J. Matthews, Saturation front evolution for liquid infiltration into a gas filled porous medium with counter-current flow, European Journal of Mechanics B/Fluids, 43, 202-215, 2014.
15. Holden, L., The Buckley-Leverett Model Equation with Spatially Stochastic Flux Function, SIAM J. Appl. Math., 57(5), 1443-1454, 1997.
16. McWhorter, D. B. and D. K. Sunada, Exact Integral Solutions for Two-Phase Flow, Water Resources Research, 26(3), 399-413, 1990.
17. Mualem, Y., A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, Water Resources Research, 12(3), 513-522, 1976.
18. Neuman, S. P., Wetting Front Pressure Head in the Infiltration Model of Green and Ampt, Water Resources Research, 12(3), 564-566, 1976.
19. Purcell, W. R., Capillary Pressures-Their Measurement Using Mercury and the Calculation of Permeability Therefrom, Journal of Petroleum Technology, 1(2), 39-48, 1949.
20. Reitsma, S. and B. H. Kueper, Laboratory measurement of capillary pressure-saturation relationships in a rock fracture, Water Resources Research, 30(4), 865-878, 1994.
21. Richards, L. A., Capillary conduction of liquids through porous mediums, Journal of Applied Physics, 1(5), 318-333, 1931.
22. Robert, C., Handbook of Chemistry and Physics, Chemical Rubber Company, 1984.
23. Ross, P. J., Efficient Methods for Infiltration Using Richards' Equation, Water Resources Research, 26(2), 279-290, 1990.
24. Serrano, S. E., Explicit Solution to Green and Ampt Infiltration Equation, Journal of Hydrologic Engineering, 6(4), 336-340, 2001.
25. Sleep, B. E. and J. F. Sykes, Compositional Simulation of Groundwater Contamination by Organic Compounds 1. Model Development and Verification, Water Resources Research, 29(6), 1697-1708, 1993a.
26. Sleep, B. E. and J. F. Sykes, Compositional Simulation of Groundwater Contamination by Organic Compounds 2. Model Applications, Water Resources Research, 29(6), 1709-1718, 1993b.
27. Streeter, L. and E. B. Wylic, Fluid Mechanics 7th, McGraw-Hill Book Company, 1979.
28. Terez, I. E. and A. Firoozabadi, Water Injection in Water-Wet Fractured Porous Media : Experiments and a New Model with Modified Buckley-Leverett Theory, SPE Journal, 4(2), 134-141, 1999.
29. Touma, J. and M. Vauclin, Experimental and Numerical Analysis of Two-Phase Infiltration in a Partially Saturated Soil, Transport in Porous Media, 1(1), 27-55, 1986.
30. Tzavaras, J., M. Köhne, H. J. Vogel, From pore scale to continuum scale modeling of infiltration, Advances in Water Resources, 103, 108-118, 2017.
31. van Dam, J. C. and R. A. Feddes, Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation, Journal of Hydrology, 233(1), 72-85, 2000.
32. van Genuchten, M. T., A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America Journal, 44(5), 892-898, 1980.
33. Wang, C. Y. and C. Beckermann, A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media, Ⅰ. Formulation, International Journal of Heat and Mass Transfer, 36(11), 2747-2758, 1993a.
34. Wang, C. Y. and C. Beckermann, A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media, Ⅱ. Application to pressure-driven boiling flow adjacent to a vertical heated plate, International Journal of Heat and Mass Transfer, 36(11), 2759-2768, 1993b.
35. Wang, C. Y. and P. Cheng, A multiphase mixture model for multiphase, multicomponent transport in capillary porous media-Ⅰ. Model development, International Journal of Heat and Mass Transfer, 39(17), 3607-3618, 1996a.
36. Wang, P., D. M. Tartakovsky, K. D. Jarman, Jr. and A. M. Tartakovsky, CDF Solutions of Buckley-Leverett Equation with Uncertain Parameters, Multiscale Model. Simul., 11(1), 118-133, 2013.
37. Wang, Z., J. Feyen, D. R. Nielsen and M. T. van Genuchten, Two-phase flow infiltration equations accounting for air entrapment effects, Water Resources Research, 33(12), 2759-2767, 1997.
38. Wang, Z., J. Feyen, M. T. van Genuchten and D. R. Nielsen, Air entrapment effects on infiltration rate and flow instability, Water Resources Research, 34(2), 213-222, 1998.
39. 陳俊智,兩相流入滲模式之研究,國立成功大學資源工程學系碩士論文,2015。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔