跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳君彥
研究生(外文):Chun-YenChen
論文名稱:具有特殊邊牆結構之氮化鎵系發光二極體之研製
論文名稱(外文):Fabrication of GaN Based Light-Emitting Diodes (LEDs) with Specific Side Wall Structures
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:141
中文關鍵詞:氮化鎵發光二極體特殊邊牆微奈米球感應耦合電漿離子快速對流沉積反射鏡抗反射保護層
外文關鍵詞:GaNlight-emitting diodestextured sidewallsmicro- and nano-spheresinductively coupled plasmarapid convection depositionbackside reflectorantireflection layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,為了改善氮化鎵系發光二極體之光取出效率(light extraction efficiency),吾人研製一系列具有特殊邊牆結構之高品質氮化鎵系發光二極體。分別提出了奈米材料之應用與元件製造技術,其中包含特殊邊牆結構、利用快速對流沉積法研製奈米級粗糙化背鍍反射鏡、混合式特殊邊牆之奈米級粗糙化背鍍反射鏡以及複合式二氧化矽微奈米球抗反射保護層填補於特殊邊牆之奈米級粗糙化背鍍反射鏡,有效提升氮化鎵系發光二極體之光電轉換效率,優化氮化鎵系發光二極體之性能。本論文對氮化鎵系發光二極體元件之光電特性,及各種複合式特殊邊牆結構之製程皆有深入且詳細的研究與探討。

首先,吾人利用感應耦合電漿離子(inductively coupled plasma, ICP)蝕刻製程,製備出具有特殊邊牆結構之氮化鎵系發光二極體,並可在不影響電性特性之下,改善元件邊牆粗糙度,有效降低內部全反射(total internal reflection, TIR)與增加光散射(light scattering)機會。光輸出功率(light output power)與光通量(luminous flux)分別提升18.3%以及18.4%,可有效改善光電轉化效率。
其次,將具自組裝偽六角緊密堆積(pseudo-hexagonal close packing)陣列之二氧化矽奈米球單層結構,塗佈至藍寶石基板背面當作蝕刻硬遮罩,利用乾蝕刻轉印出具凸半球陣列之圖騰於藍寶石背基板,再利用熱蒸鍍依序背鍍上鋁金屬反射鏡(aluminum metal mirror),藉由粗糙化凸半球圖騰之反射鏡結構,減少元件背部封裝金屬之光吸收並增加光散射的機會,有效增加光取出效率,相較於傳統高功率氮化鎵系發光二極體,在不影響元件之電性特性下,仍可提升光輸出功率與光通量達30.7%以及32.0%。

此外,以前章之特殊邊牆結構,結合具凸半球陣列之背鍍反射鏡,形成混合式特殊邊牆之凸半球陣列背鍍反射鏡,改善元件邊牆及基板粗糙度,有效降低內部全反射,並反射由主動區發出之背向光以增進光散射,有效提高光取出效率。相較於傳統高功率氮化鎵系發光二極體,在不影響元件之電性特性下,仍可提升光輸出功率與光通量達55.8%以及49.3%。

最後,探討經由快速對流沉積法,塗佈混合式二氧化矽微米球抗反射保護層結構於具有特殊邊牆之凸半球陣列背鍍反射鏡,而混合式二氧化矽微米球結構,可在不影響電性特性下,進一步改善元件表面粗糙度,同時形成漸層式折射率(graded refractive index)結構,有效降低內部全反射之效應,使主動層發出之光子有更高機率散射至結構之外,提升光輸出功率與外部量子效率高達54.2%以及54.4%。本研究論文中所研製的高品質氮化鎵系發光二極體,皆可有效提升光電轉換效率,在商業應用上相當具有潛力。
In this thesis, to enhance light extraction efficiency (LEE), a series of GaN-based light-emitting diodes (LEDs) with specific sidewall structures are fabricated and studied. The device fabrication process and nanomaterials applications, including fabrication of specific sidewall structures, GaN-based LEDs with a nanoscale textured backside reflector fabricated via rapid convection deposition (RCD), GaN-based with hybrid structure of textured sidewalls and a nanoscale textured backside reflector, and GaN-based LEDs with textured sidewalls, a nanoscale textured backside reflector, and a passivation layer are proposed to improve wall-plug efficiency (WPE). The optical and electrical properties of these GaN-based LEDs are studied and discussed. In addition, the fabrication of various combined textured sidewalls structures is discussed in detail.

GaN-based LEDs with textured sidewall structures fabricated via inductively coupled plasma (ICP) etching process are studied. The textured sidewall structures improve sidewall roughness without degrading electrical properties. Thus, the total internal reflection (TIR) is effectively reduced and the light scattering probability is increased. Compared with a conventional GaN-based LED, at 350 mA, the studied device exhibits 18.3% and 18.4% enhancements in light output power (LOP) and luminous flux, respectively. Therefore, performance can be improved by employing textured sidewall structures.

A monolayer of self-assembled pseudo-hexagonal close-packing SiO2 nanospheres was coated onto the backside of a sapphire substrate as a hard mask. Using a dry ICP etching process, hemispherical patterns were transferred onto the backside of the sapphire substrate. Then, an aluminum (Al) metal mirror was deposited using a thermal evaporator. Due to the presence of textured hemispherical patterns, downward photons emitted from the active region toward the textured backside reflector reflected and scattered for light extraction rather than being absorbed by the package metal. Compared with a conventional GaN-based LED, at 350 mA, the studied device exhibits 30.7% and 32.0% enhancements in LOP and luminous flux, respectively. In addition, textured sidewall structures were combined with the hemispherical pattern backside reflector. This combination improved the roughness of sidewalls and the sapphire substrate. Thus, the TIR is effectively reduced. Downward photons emitted from the active region are scattered and redirected in arbitrary directions for light extraction. The probability of light scattering is also increased. Compared with a conventional GaN-based LED, at 350 mA, the studied device exhibits 55.8% and 49.3% improvements in LOP and luminous flux, respectively, without degrading electrical properties.

Finally, the combination of a hybrid SiO2 microsphere (MS) antireflection passivation layer deposited on the textured sidewall structures and a hemispherical backside reflector fabricated via RCD was studied. The hybrid SiO2 MS antireflection passivation layer further improved surface roughness and light scattering without degrading electrical properties. The enhanced light extraction of GaN-based LEDs can be attributed to a graded-refractive-index structure. Due to a reduction of TIR, photons emitted from the active region more easily escape from the inside of LEDs. Compared with a conventional LED, at 350 mA, the studied device exhibits 54.2% and 54.4% improvements in LOP and external quantum efficiency (EQE), respectively. The leakage current is also reduced without degrading the electrical properties.

The proposed modifications improve the performance of GaN-based LEDs. High-performance GaN-based LEDs are expected to compete with traditional light sources in solid-state lighting applications.
Contents
Abstract……………………………………………IV
Table Captions……………………………………………XVIII
Figure Captions……………………………………………XIX
Chapter 1. Introduction
1-1. History and Development of GaN-based LEDs……………………………1
1-2. Problems of GaN-based LEDs……………………………………………3
1-3. Review of Textured Sidewall Structures……………………………………4
1-4. Review of Micro-/ Nano-sphere Structures………………………………5
1-5. Thesis Organizations……………………………………………5
Chapter 2. Fabrication of GaN-based LEDs with Specific Textured Sidewalls
2-1. Introduction……………………………………………7
2-2. Fabrication Processes of LED Devices…………………………………………8
2-2-1. LED Wafer Cleaning Process……………………………………………8
2-2-2. Devices Structure and Fabrication……………………………………………8
2-3. Experimental Results and Discussion…………………………………………10
2-3-1. Surface Morphology……………………………………………10
2-3-2. Electrical Properties……………………………………………10
2-3-3. Optical Properties……………………………………………11
2-3-4. Light Emission Mapping……………………………………………14
2-3-5. Far-filed pattern……………………………………………14
2-4. Summary……………………………………………15
Chapter 3. Improved Performance of GaN-based LEDs with Textured Sidewalls and ICP-transferred Nanohemispherical Backside Reflector
3-1. High-power GaN-based LEDs with ICP-transferred Nanohemispherical Backside Reflector via Rapid Convection Deposition……………………………………………16
3-1-1. Introduction……………………………………………16
3-1-1-1. Introduction……………………………………………16
3-1-1-2. Rapid Convective Deposition……………………………………………18
3-1-2. Fabrication Processes of LED Devices…………………………………19
3-1-2-1. LED Wafer Cleaning Process……………………………………………19
3-1-2-2. Devices Structure and Fabrication……………………………………19
3-1-3. Experimental Results and Discussion……………………………………21
3-1-3-1. Surface Morphology……………………………………………21
3-1-3-2. Atom Force Microscope……………………………………………22
3-1-3-3. Reflectivity……………………………………………22
3-1-3-4. Electrical Properties……………………………………………23
3-1-3-5. Optical Properties……………………………………………24
3-1-3-6. Light Emission Mapping……………………………………………27
3-1-3-7. Far-field pattern……………………………………………27
3-1-4. Summary……………………………………………28
3-2. High-power GaN-based LEDs with Textured Sidewalls and ICP-transferred Nanohemispherical Backside Reflector……………………………………………29
3-2-1. Introduction……………………………………………29
3-2-2. Fabrication Processes of LED Devices…………………………………30
3-2-2-1. LED Wafer Cleaning Process……………………………………………30
3-1-2-2. Devices Structure and Fabrication……………………………………30
3-2-3. Experimental Results and Discussion……………………………………32
3-2-3-1. Surface Morphology……………………………………………32
3-2-3-2. Atom Force Microscope……………………………………………34
3-2-3-3. Electrical Properties……………………………………………34
3-2-3-4. Optical Properties……………………………………………35
3-2-3-5. Light Emission Mapping……………………………………………38
3-2-3-6. Far-field pattern……………………………………………39
3-2-4. Summary……………………………………………40
Chapter 4. Improved Performance of GaN-based LEDs with Textured Sidewalls, Nanohemispherical Backside Reflector, and SiO2 Microsphere/Nanoparticle Passivation Structures
4-1. Introduction……………………………………………41
4-1-1. Introduction……………………………………………41
4-1-2. Mechanisms of Anti-reflection……………………………………………43
4-2. Fabrication Processes of LED Devices………………………………………44
4-2-1. LED Wafer Cleaning Process……………………………………………44
4-2-2. Devices Structure and Fabrication…………………………………………45
4-3. Experimental Results and Discussion…………………………………………48
4-3-1. Surface Morphology……………………………………………48
4-3-2. Transmittance……………………………………………49
4-3-2. Atom Force Microscope……………………………………………49
4-3-3. Electrical Properties……………………………………………50
4-3-4. Optical Properties……………………………………………51
4-3-5. Light Emission Mapping……………………………………………55
4-3-6. Far-field pattern……………………………………………55
4-4. Summary……………………………………………56
Chapter 5. Conclusion and Prospects
5-1. Conclusion……………………………………………58
5-2. Prospects……………………………………………61
References……………………………………………62
Tables……………………………………………78
Figures……………………………………………82
1.M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances, IEEE J. Quant. Electron., vol. 15, no. 4, pp. 1028-1040, 2009.
2.E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart, Sci., vol. 308, no. 5726, pp. 1274-1278, 2005.
3.H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor‐deposited single‐crystal‐line GaN, Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
4.H. P. Maruska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg‐doped GaN, Appl. Phys. Lett., vol. 22, no. 6, pp. 303-305, 1973.
5.M. Ilegems and R. Dingle, “Luminescence of Be‐ and Mg‐doped GaN, J. Appl. Phys., vol. 44, no. 9, pp. 4234-4235, 1973.
6.H. P. Maruska and D. A. Stevenson, “Mechanism of light production in metal-insulator-semiconductor diodes; GaN:Mg violet light-emitting diodes, Solid-State Electron., vol. 17, no. 11, pp. 1171-1179, 1974.
7.S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates, Appl. Phys. Lett., vol. 42, no. 5, pp. 427-429, 1983.
8.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett, vol. 48, no. 5, pp. 353-355, 1986.
9.N. Shuji, “GaN growth using GaN buffer layer, Jpn. J. Appl. Phys., vol. 30, no. 10A, p. L1705, 1991.
10.S. Nakamura, T. Mukai, and M. Senoh, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers, J. Appl. Phys., vol. 71, no. 11, pp. 5543-5549, 1992.
11.A. Hiroshi, K. Masahiro, H. Kazumasa, and A. Isamu, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Jpn. J. Appl. Phys., vol. 28, no. 12A, p. L2112, 1989.
12.N. Shuji, M. Takashi, S. Masayuki, and I. Naruhito, “Thermal annealing effects on P-type Mg-doped GaN films, Jpn. J. Appl. Phys., vol. 31, no. 2B, p. L139, 1992.
13.N. Shuji, I. Naruhito, S. Masayuki, and M. Takashi, “Hole compensation mechanism of p-type GaN films, Jpn. J. Appl. Phys., vol. 31, no. 5R, p. 1258, 1992.
14.J. Neugebauer and C. G. Van de Walle, “Hydrogen in GaN: novel aspects of a common impurity, Phys. Rev. Lett., vol. 75, no. 24, pp. 4452-4455, 1995.
15.J. Neugebauer and C. G. V. d. Walle, “Role of hydrogen in doping of GaN, Appl. Phys. Lett., vol. 68, no. 13, pp. 1829-1831, 1996.
16.J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “Electroluminescence in GaN, J. Luminescence, vol. 4, no. 1, pp. 63-66, 1971.
17.N. Shuji, M. Takashi, and S. Masayuki, “High-power GaN p-n junction blue-light-emitting diodes, Jpn. J. Appl. Phys., vol. 30, no. 12A, p. L1998, 1991.
18.N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes, Jpn. J. Appl. Phys., vol. 32, no. 1A, p. L8, 1993.
19.S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes, Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, 1994.
20.N. S. Shinbun, “pn junction DH blue LEDs with a brightness of more than 1000 mcd were developed by Nichia Chemical Industries Ltd, Japanese newspaper press release, 1993.
21.N. Shuji, S. Masayuki, I. Naruhito, and N. Shin-ichi, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures, Jpn. J. Appl. Phys., vol. 34, no. 7A, p. L797, 1995.
22.O. Mauricio Massazumi, N. Akira, T. Kazuo, S. Tadashi, O. Tadahiro, and N. Takahisa, “Reducing reverse-bias current in 450°C -annealed n+p junction by hydrogen radical sintering, Jpn. J. Appl. Phys., vol. 34, no. 2S, p. 796, 1995.
23.H. P. Maruska, “A brief history of GaN blue light-emitting diodes, Office of Navil Research. National Compound Semiconductor Roadmap, 2005.
24.S. Nakamura and G. Fasol, “The blue laser diode: GaN-based light emitting diode and lasers, Springer, Berlin, pp. 216-219, 1997.
25.S. Nakamura, “Background story of the invention of efficient InGaN blue-light-emitting diodes (Nobel Lecture), Angew. Chem. Int. Ed., vol. 54, no. 27, pp. 7770-7788, 2015.
26.S. Nakamura, “Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes, Rev. Mod. Phys., vol. 87, no. 4, pp. 1139-1151, 2015.
27.M. Fukuda, “Optical semiconductor devices, John Wiley & Sons, New York, 1999.
28.I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes, Appl. Phys. Lett., vol. 63, no. 16, pp. 2174-2176, 1993.
29.C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light‐emitting diodes, Appl. Phys. Lett., vol. 57, no. 27, pp. 2937-2939, 1990.
30.Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN Superlattice structure, IEEE J. Quantum Electron., vol. 46, no. 4, pp. 492-498, 2010.
31.A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. K. Jr., “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures, Appl. Phys. Lett., vol. 70, no. 21, pp. 2790-2792, 1997.
32.M. Ali, O. Svensk, L. Riuttanen, M. Kruse, S. Suihkonen, A. E. Romanov, P. T. Törmä, M. Sopanen, H. Lipsanen, M. A. Odnoblyudov, and V. E. Bougrov, “Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning, Semicond. Sci. Technol., vol. 27, no. 8, p. 082002, 2012.
33.T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, 2004.
34.H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, “Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes, Solid-State Electron., vol. 52, no. 8, pp. 1193-1196, 2008.
35.H. P. Shiao, C. Y. Wang, M. L. Wu, and C. H. Chiu, “Enhancing the brightness of GaN light-emitting diodes by manipulating the illumination direction in the photoelectrochemical process, IEEE Photon. Technol. Lett., vol. 22, no. 22, pp. 1653-1655, 2010.
36.F. I. Lai and J. F. Yang, “Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing, Nanoscale Research Lett., vol. 8, no. 1, p. 244, 2013.
37.H. Zhu, J. Xi, and J. G. Liu, “Fabrication and packaging of a vertical-structured UV LED device by laser lift-off of sapphire, IEEE Solid State Lighting (SSLCHINA), 2015 12th China International Forum on, pp. 20-23, 2015.
38.D. Iida, S. Kawai, N. Ema, T. Tsuchiya, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Laser lift-off technique for freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes, Appl. Phys. Lett., vol. 105, no. 7, p. 072101, 2014.
39.F. I. Lai, S. C. Ling, C. E. Hsieh, T. H. Hsueh, H. C. Kuo, and T. C. Lu, “Extraction efficiency enhancement of GaN-based light-emitting diodes by microhole array and roughened surface oxide, IEEE Electron. Device Lett., vol. 30, no. 5, pp. 496-498, 2009.
40.D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-based LEDs with phosphoric acid etched undercut sidewalls, IEEE Photon. Technol. Lett., vol. 21, no. 8, pp. 510-512, 2009.
41.C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls, IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 19-21, 2005.
42.J. S. Lee, J. Lee, S. Kim, and H. Jeon, “GaN-based light-emitting diode structure with monolithically integrated sidewall deflectors for enhanced surface emission, IEEE Photon. Technol. Lett., vol. 18, no. 15, pp. 1588-1590, 2006.
43.M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes, Appl. Phys. Lett., vol. 91, no. 23, p. 231107, 2007.
44.C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall, IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2038-2040, 2005.
45.S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Horng, “Enhanced light output in roughened GaN-based light-emitting diodes using electrodeless photoelectrochemical etching, IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2472-2474, 2006.
46.J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission, Appl. Phys. Lett., vol. 94, no. 10, p. 101105, 2009.
47.C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate, Appl. Phys. Lett., vol. 95, no. 1, p. 011110, 2009.
48.J. K. Liou, W. C. Chen, C. H. Chang, Y. C. Chang, J. H. Tsai, and W. C. Liu, “Enhanced light extraction of a high-power GaN-based light-emitting diode with a nanohemispherical hybrid backside reflector, IEEE Trans. Electron Devices, vol. 62, no. 10, pp. 3296-3301, 2015.
49.J. K. Huang, D. W. Lin, M. H. Shih, K. Y. Lee, J. R. Chen, H. W. Huang, S. Y. Kuo, C. H. Lin, P. T. Lee, G. C. Chi, and H. C. Kuo, “Investigation and comparison of the GaN-based light-emitting diodes grown on high aspect ratio nano-cone and general micro-cone patterned sapphire substrate, J. Disp. Technol., vol. 9, no. 12, pp. 947-952, 2013.
50.W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic crystal light-emitting diodes fabricated by microsphere lithography, Nanot, vol. 19, no. 25, p. 255302, 2008.
51.Z. Zhang, C. Geng, Z. Hao, T. Wei, and Q. Yan, “Recent advancement on micro-/nano-spherical lens photolithography based on monolayer colloidal crystals, Adv. Colloid. Interfac., vol. 228, pp. 105-122, 2016.
52.L. Y. Chen, Y. Y. Huang, C. H. Chang, Y. H. Sun, Y. W. Cheng, M. Y. Ke, C. P. Chen, and J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes, Opt. Express, vol. 18, no. 8, pp. 7664-7669, 2010.
53.M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays, IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 257-259, 2009.
54.S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong, and G. M. Yang, “An improvement of light extraction efficiency for GaN-based light emitting diodes by selective etched nanorods in periodic microholes, Opt. Express, vol. 21, no. 6, pp. 7125-7130, 2013.
55.Q. Zhang, K. H. Li, and H. W. Choi, “InGaN light‐emitting diodes with indium‐tin‐oxide sub‐micron lenses patterned by nanosphere lithography, Appl. Phys. Lett., vol. 100, no. 6, p. 061120, 2012.
56.B. J. Kim, H. Jung, J. Shin, M. A. Mastro, C. R. Eddy Jr, J. K. Hite, S. H. Kim, J. Bang, and J. Kim, “Enhancement of light extraction efficiency of ultraviolet light emitting diodes by patterning of SiO2 nanosphere arrays, Thin Solid Films, vol. 517, no. 8, pp. 2742-2744, 2009.
57.Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses, IEEE J. Sel. Top. Quant. Electron., vol. 15, no. 4, pp. 1218-1225, 2009.
58.H. K. Lee, Y. H. Ko, G. S. R. Raju, and J. S. Yu, “Light-extraction enhancement and directional emission control of GaN-based LEDs by self-assembled monolayer of silica spheres, Opt. Express, vol. 20, no. 22, pp. 25058-25063, 2012.
59.Q. Zhang, K. H. Li, and H. W. Choi, “Polarized emission from InGaN light-emitting diodes with self-assembled nanosphere coatings, IEEE Photon. Technol. Lett., vol. 24, no. 18, pp. 1642-1645, 2012.
60.C. H. Hsu, Y. C. Chan, W. C. Chen, C. H. Chang, J. K. Liou, S. Y. Cheng, D. F. Guo, and W. C. Liu, “Study of GaN-based LEDs with hybrid SiO2 microsphere/nanosphere antireflection coating as a passivation layer by a rapid convection deposition, IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 1134-1139, 2017.
61.P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness, Chem. Mater., vol. 11, no. 8, pp. 2132-2140, 1999.
62.Z. Z. Gu, A. Fujishima, and O. Sato, “Fabrication of high-quality opal films with controllable thickness, Chem. Mater., vol. 14, no. 2, pp. 760-765, 2002.
63.Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications, Adv. Mater., vol. 12, no. 10, pp. 693-713, 2000.
64.D. Wang and H. Möhwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating, Adv. Mater., vol. 16, no. 3, pp. 244-247, 2004.
65.F. García-Santamaría, H. T. Miyazaki, A. Urquía, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. López, “Nanorobotic manipulation of microspheres for on-chip diamond architectures, Adv. Mater., vol. 14, no. 16, pp. 1144-1147, 2002.
66.X. H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays, J. Disp. Technol., vol. 9, no. 5, pp. 324-332, 2013.
67.Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures, Opt. Express, vol. 17, no. 16, pp. 13747-13757, 2009.
68.P. Zhao, X. Jiao, and H. Zhao, “Analysis of light extraction efficiency enhancement for InGaN quantum wells light-emitting diodes with microspheres, IEEE Energytech, pp. 1-6, 2012
69.L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications, J. Mater. Chem., vol. 21, no. 1, pp. 40-56, 2011.
70.X. Gu, L. Chen, S. Shen, and W. Wan, “Both improvements of the light extraction efficiency and scattered angle of GaN-LED using sub-micron Fresnel lens array, Proc. SPIE, vol. 9667, p. 96670C, 2015.
71.W. C. Yang, C. Lo, C. Y. Wei, and W. S. Lour, “Cell-temperature determination in InGaP-(In)GaAs-Ge triple-junction solar cells, IEEE Electron Device Lett., vol. 32, no. 10, pp. 1412-1414, 2011.
72.R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-leds for multi-Gb/s visible light communications, IEEE Photon. Technol. Lett., vol. 28, no. 19, pp. 2023-2026, 2016.
73.Y. C. Lin, W. C. Liu, C. L. Chang, C. C. Chung, Y. H. Chen, T. Y. Chung, and C. Y. Liu, “Internal quantum efficiency enhancement by relieving compressive stress of GaN-based LED, IEEE Photon. Technol. Lett., vol. 26, no. 18, pp. 1793-1796, 2014.
74.N. M. Park, M. Oh, Y. B. Na, W. S. Cheong, and H. Kim, “Sputter deposition of Sn-doped ZnO/Ag/Sn-doped ZnO transparent contact layer for GaN LED applications, Mater. Lett., vol. 180, pp. 72-76, 2016.
75.G. Halpin, T. Robinson, X. Jin, X. N. Kang, and G. Y. Zhang, “Study of GaN LED ITO nano-gratings with standing wave analysis, IEEE Photon. J., vol. 6, no. 3, pp. 1-10, 2014.
76.J. Jewell, D. Simeonov, S. C. Huang, Y. L. Hu, S. Nakamura, J. Speck, and C. Weisbuch, “Double embedded photonic crystals for extraction of guided light in light-emitting diodes, Appl. Phys. Lett., vol. 100, no. 17, p. 171105, 2012.
77.J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection, Nat. Photon, vol. 1, no. 3, pp. 176-179, 2007.
78.P. Mao, F. Sun, H. Yao, J. Chen, B. Zhao, B. Xie, M. Han, and G. Wang, “Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films, Nanoscale, vol. 6, no. 14, pp. 8177-8184, 2014.
79.J. Z. Liu, M. D. B. Charlton, C. H. Lin, K. Y. Lee, C. Krishnan, and M. C. Wu, “Efficiency improvement of blue LEDs using a GaN burried air void photonic crystal with high air filling fraction, IEEE J. Quant. Electron., vol. 50, no. 5, pp. 314-320, 2014.
80.J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates, IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1193-1195, 2008.
81.C. H. Hsu, Y. C. Chan, W. C. Chen, C. H. Chang, J. K. Liou, S. Y. Cheng, D. F. Guo, and W. C. Liu, “Study of GaN-based LEDs with hybrid SiO2 microsphere/nanosphere antireflection coating as a passivation layer by a rapid convection deposition, IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 1134-1139, 2017.
82.S. Zhou, C. Zheng, J. Lv, Y. Gao, R. Wang, and S. Liu, “GaN-based flip-chip LEDs with highly reflective ITO/DBR p-type and via hole-based n-type contacts for enhanced current spreading and light extraction, Opt. Laser Technol., vol. 92, pp. 95-100, 2017.
83.J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “Enhanced light extraction from triangular GaN-based light-emitting diodes, IEEE Photon. Technol. Lett., vol. 19, no. 23, pp. 1865-1867, 2007.
84.M. S. Wang, L. Yang, and X. J. Huang, “Strong enhancement in light output of GaN-based LEDs with graded-refractive-index ITO deposited on textured V-shaped pits, IEEE Electron Device Lett., vol. 35, no. 4, pp. 464-466, 2014.
85.J. K. Liou, C. C. Chen, P. C. Chou, Z. J. Tsai, Y. C. Chang, and W. C. Liu, “Implementation of a high-performance GaN-based light-emitting diode grown on a nanocomb-shaped patterned sapphire substrate, IEEE J. Quant. Electron., vol. 50, no. 12, pp. 973-980, 2014.
86.Z. Yiyun, G. Enqing, L. Zhi, W. Tongbo, L. Jing, Y. Xiaoyan, and W. Guohong, “Light extraction efficiency improvement by curved GaN sidewalls in InGaN-based light-emitting diodes, IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 243-245, 2012.
87.J. S. Lee, J. Lee, S. Kim, and H. Jeon, “Fabrication of reflective GaN mesa sidewalls for the application to high extraction efficiency LEDs, Phys. Status Solidi C, vol. 4, no. 7, pp. 2625-2628, 2007.
88.J. Lv, C. Zheng, S. Zhou, F. Fang, and S. Yuan, “Highly efficient and reliable high power InGaN/GaN LEDs with 3D patterned step-like ITO and wavy sidewalls, Phys. Status Solidi A, vol. 213, no. 5, pp. 1181-1186, 2016.
89.E. O. Samwel, P. R. Bissell, and J. C. Lodder, “Remanent magnetic measurements on perpendicular recording materials with compensation for demagnetizing fields, J. Appl. Phys., vol. 73, no. 3, pp. 1353-1359, 1993.
90.S. Singh, A. D. Sai Nandini, S. Pal, and C. Dhanavantri, “Enhancement of light extraction efficiency of vertical LED with patterned graphene as current spreading layer, Superlattice. Microst., vol. 89, pp. 89-96, 2016.
91.H. Huang, J. Hu, and H. Wang, “GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer, J. Semicond., vol. 35, no. 8, p. 084006, 2014.
92.Z. Chen, W. Liu, W. Wan, G. Chen, Y. Chen, B. Zhang, and C. Jin, “Performance of GaN-based LEDs with nanopatterned indium tin oxide electrode, J. Nanomat., vol. 2016, no. 8202405, p. 7, 2016.
93.S. Zhou, S. Liu, and H. Ding, “Enhancement in light extraction of LEDs with SiO2 current blocking layer deposited on naturally textured p-GaN surface, Opt. Laser Technol., vol. 47, pp. 127-130, 2013.
94.Y. Yang, Y. Ren, Y. Chen, M. Liu, W. Chen, X. Han, X. Lin, Q. Liao, W. Zang, H. Luo, J. Lin, Z. Wu, Y. Liu, and B. Zhang, “Light output enhancement of GaN-based light-emitting diodes by maskless surface roughening, Microelectron. Eng., vol. 139, pp. 39-42, 2015.
95.Y. H. Yeh, J. K. Sheu, M. L. Lee, W. Y. Yen, L. C. Peng, C. Y. Yeh, P. H. Liao, P. C. Chen, and W. C. Lai, “Vertical GaN-based LEDs with naturally textured surface formed by patterned sapphire substrate with self-assembled Ag nanodots as etching mask, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2919-2923, 2015.
96.J. Y. Cho, J. S. Kim, Y. D. Kim, H. J. Cha, and H. Lee, “Fabrication of oxide-based nano-patterned sapphire substrate to improve the efficiency of GaN-based of LED, Jpn. J. Appl. Phys., vol. 54, no. 2S, p. 02BA04, 2015.
97.T. Kondo, T. Kitano, A. Suzuki, M. Mori, K. Naniwae, S. Kamiyama, M. Iwaya, T. Takeuchi, and I. Akasaki, “Advantages of the moth-eye patterned sapphire substrate for the high performance nitride based LEDs, Phys. Status. Solidi C, vol. 11, no. 3-4, pp. 771-774, 2014.
98.Y. S. Lin, S. Y. Hsiao, C. L. Tseng, C. H. Shen, and J. S. Chiang, “Effect of a cooling step treatment on a high-voltage GaN LED during ICP dry etching, J. Electron. Mater., vol. 46, no. 2, pp. 941-946, 2017.
99.Y. C. Chu, M. H. Wu, C. J. Chung, Y. H. Fang, and Y. K. Su, “Micro-chip shaping for luminance enhancement of GaN micro-light-emitting diodes array, IEEE Electron Device Lett., vol. 35, no. 7, pp. 771-773, 2014.
100.S. J. C. Chang, L. M. Chang, J. Y. Chen, C. S. Hsu, D. S. Kuo, C. F. Shen, W. S. Chen, and T. K. Ko, “GaN-based light-emitting diodes prepared with shifted laser stealth dicing, J. Disp. Technol., vol. 12, no. 2, pp. 195-199, 2016.
101.H. Chen, H. Guo, P. Zhang, X. Zhang, H. Liu, S. Wang, and Y. Cui, “Enhanced performance of GaN-based light-emitting diodes by using Al mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector with patterned sapphire substrate, Appl. Phys. Express, vol. 6, no. 2, p. 022101, 2013.
102.S. Y. Kuo, K. B. Hong, and T. C. Lu, “Enhanced light output of UVA GaN vertical LEDs with novel DBR mirrors, IEEE J. Quant. Electron., vol. 51, no. 12, pp. 1-5, 2015.
103.J. Xu, W. Zhang, J. Dai, Z. Wu, Y. Fang, and C. Chen, “High performance GaN flip-chip light-emitting diodes with TiO2/SiO2 distributed Bragg reflector, International Photon. OptoElectron., Wuhan, p. JW3A.12, 2015.
104.H. Guo, X. Zhang, H. Chen, P. Zhang, H. Liu, H. Chang, W. Zhao, Q. Liao, and Y. Cui, “High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector, Opt. Express, vol. 21, no. 18, pp. 21456-21465, 2013.
105.H. David, M. Asad, D. P. Christopher, N. Shuji, and P. D. Steven, “Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs, Appl. Phys. Express, vol. 10, no. 3, p. 032101, 2017.
106.H. Huang, H. Wang, X. Huang, and J. Hu, “GaN-based high-voltage light-emitting diodes with backside reflector, J. Semicond., vol. 35, no. 7, p. 074013, 2014.
107.H. C. Chen, M. J. Chen, Y. C. Cheng, J. R. Yang, and M. Shiojiri, “Amplified spontaneous emission from ZnO in n-ZnO/p-GaN heterojunction light-emitting diodes with an external-feedback reflector, IEEE Photon. Technol. Lett., vol. 22, no. 4, pp. 248-250, 2010.
108.J. H. Son, J. U. Kim, Y. H. Song, B. J. Kim, C. J. Ryu, and J. L. Lee, “Design rule of nanostructures in light-emitting diodes for complete elimination of total internal reflection, Adv. Mater., vol. 24, no. 17, pp. 2259-2262, 2012.
109.J. K. Sheu, I. H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads, Appl. Phys. Lett., vol. 93, no. 10, p. 103507, 2008.
110.S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-based LEDs with a hybrid Al Mirror+TiO2/SiO2 DBR Backside Reflector, J. Lightwave Technol., vol. 26, no. 17, pp. 3131-3136, 2008.
111.Y. L. Chou, R. M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, “Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector, IEEE Photon. Technol. Lett., vol. 23, no. 7, pp. 393-395, 2011.
112.H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale, J. Appl. Phys., vol. 103, no. 1, p. 014314, 2008.
113.C. Y. Huang, H. M. Ku, and S. Chao, “Light extraction enhancement for InGaN/GaN LED by three dimensional auto-cloned photonics crystal, Opt. Express, vol. 17, no. 26, pp. 23702-23711, 2009.
114.J. K. Liou, P. C. Chou, C. C. Chen, Y. C. Chang, W. C. Hsu, S. Y. Cheng, J. H. Tsai, and W. C. Liu, “Implementation of high-power GaN-based LEDs with a textured 3-D backside reflector formed by inserting a self-assembled SiO2 nanosphere monolayer, IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 831-837, 2014.
115.F. Járai-Szabó, Z. Néda, S. Aştilean, C. Farcău, and A. Kuttesch, “Shake-induced order in nanosphere systems, Eur. Phys. J. E, vol. 23, no. 2, pp. 153-159, 2007.
116.P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays, Langmuir, vol. 24, no. 21, pp. 12150-12157, 2008.
117.Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays, Appl. Phys. Lett., vol. 91, no. 22, p. 221107, 2007.
118.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops, Nature, vol. 389, no. 6653, pp. 827-829, 1997.
119.B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions, Langmuir, vol. 20, no. 6, pp. 2099-2107, 2004.
120.K. Stephan, L. C. Zhong, and P. Stephan, “Influence of capillary pressure on the evaporation of thin liquid films, Heat and Mass Transfer, vol. 30, no. 6, pp. 467-472, 1995.
121.P. C. Wayner, “Interfacial profile in the contact line region of a finite contact angle system, J. Colloid Interf. Sci., vol. 77, no. 2, pp. 495-500, 1980.
122.Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, R. A. Arif, H. Tong, and N. Tansu, “Optimization and fabrication of III-nitride light-emitting diodes with self-assembled colloidal-based convex microlens arrays, IEEE Photon. Global, Singapore, pp. 1-4, 2008.
123.J. Q. Xi, H. Luo, J. K. Kim, and E. F. Schubert, “High light-extraction efficiency in GaInN light-emitting diode with pyramid reflector, Proc. SPIE, vol. 6486, p. 648606, 2007.
124.S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays, Appl. Phys. Lett., vol. 92, no. 12, p. 121108, 2008.
125.L. Ma, G. D. Shen, J. P Liu, Z. Y Gao, and C. Xu, X. Wang, “Theoretical and experimental analysis of the effects of the series resistance on luminous efficacy in GaN-based light emitting diodes, Chin. Phys. B, vol. 23, no. 11, pp. 118507-118507, 2014.
126.T. W. M. Jr., “Maximum spectral luminous efficacy of white light, J. Appl. Phys., vol. 111, no. 10, p. 104909, 2012.
127.E. Taylor Shaw, E. Angioni, N. J. Findlay, B. Breig, A. R. Inigo, J. Bruckbauer, D. J. Wallis, P. J. Skabara, and R. W. Martin, “Cool to warm white light emission from hybrid inorganic/organic light-emitting diodes, J. Mater. Chem. C, vol. 4, no. 48, pp. 11499-11507, 2016.
128.L. Shan, T. Wei, Y. Sun, Y. Zhang, A. Zhen, Z. Xiong, Y. Wei, G. Yuan, J. Wang, and J. Li, “Super-aligned carbon nanotubes patterned sapphire substrate to improve quantum efficiency of InGaN/GaN light-emitting diodes, Opt. Express, vol. 23, no. 15, pp. A957-A965, 2015.
129.S. Liang, W. Tongbo, S. Yuanping, Z. Yonghui, X. Zhuo, Z. Aigong, W. Junxi, W. Yang, and L. Jinmin, “Effect of layers of carbon-nanotube-patterned substrate on GaN-based light-emitting diodes, Jpn J. Appl. Phys., vol. 54, no. 6, p. 065102, 2015.
130.H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3 passivation layer for InGaN/GaN LED deposited by ultrasonic spray pyrolysis, IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1243-1246, 2014.
131.M. Yoshihiko, K. Masahiro, and N. Suguru, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp, Semicond. Sci. Technol., vol. 29, no. 8, p. 084004, 2014.
132.Y. Chen, D. Yuan, M. Yang, D. Wang, and X. Sun, “High efficiency GaN LEDs with submicron-scale 2D periodic structures directly fabricated by laser interference ablation, Opt. Laser Technol., vol. 90, pp. 211-215, 2017.
133.K. Lee, C. R. Lee, T. H. Chung, J. Park, J. Y. Leem, K. U. Jeong, and J. S. Kim, “Influences of graded superlattice on the electrostatic discharge characteristics of green InGaN/GaN light-emitting diodes, J. Cryst. Growth, vol. 464, pp. 138-142, 2017.
134.J. Zhu, H. Zhang, Z. Zhu, Q. Li, and G. Jin, “Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating, Opt. Commun., vol. 322, pp. 66-72, 2014.
135.K. Xu, Y. Xie, H. Ma, Y. Du, F. Zeng, P. Ding, Z. Gao, C. Xu, and J. Sun, “ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction, Solid-State Electron., vol. 126, pp. 5-9, 2016.
136.H. X. Wang, H. D. Li, Y. B. Lee, H. Sato, K. Yamashita, T. Sugahara, and S. Sakai, “Fabrication of high-performance 370 nm ultraviolet light-emitting diodes, J. Cryst. Growth, vol. 264, no. 1–3, pp. 48-52, 2004.
137.C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer, IEEE Electron Device Lett., vol. 34, no. 5, pp. 611-613, 2013.
138.S. W. Huang, C. C. Chang, H. Y. Lin, X. F. Li, Y. C. Lin, and C. Y. Liu, “Fabrication of nano-cavity patterned sapphire substrate using self-assembly meshed Pt thin film on c-plane sapphire substrate, Thin Solid Films, vol. 628, pp. 127-131, 2017.
139.C. T. Kuo, L. H. Hsu, B. H. Huang, H. C. Kuo, C. C. Lin, and Y. J. Cheng, “Influence of the microstructure geometry of patterned sapphire substrates on the light extraction efficiency of GaN LEDs, Appl. Opt., vol. 55, no. 26, pp. 7387-7391, 2016.
140.J. C. Su, C. H. Lee, Y. H. Huang, and H. Yang, “In-situ mapping of electroluminescent enhancement of light-emitting diodes grown on patterned sapphire substrates, J. of Appl. Phys., vol. 121, no. 5, p. 055705, 2017.
141.Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons, Sci. Rep., vol. 6, p. 22659, 2016.
142.Z. Liu, C. Zhu, Y. Wang, Y. Shen, H. Yang, C. Gu, J. Li, B. Liu, and X. Xu, “Light emitting enhancement and angle-resolved property of surface textured GaN-based vertical LED, J. Opt., vol. 45, no. 1, pp. 81-86, 2016.
143.P. Zuo, B. Zhao, S. Yan, G. Yue, H. Yang, Y. Li, H. Wu, Y. Jiang, H. Jia, J. Zhou, and H. Chen, “Improved optical and electrical performances of GaN-based light emitting diodes with nano truncated cone SiO2 passivation layer, Opt. Quant. Electron., vol. 48, no. 5, p. 288, 2016.
144.B. P. Yonkee, E. C. Young, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction, Appl. Phys. Lett., vol. 109, no. 19, p. 191104, 2016.
145.E. B. Stuart, K. Christopher Lalau, S. Junichi, W. Claude, S. S. Jim, N. Shuji, and P. D. Steven, “Chip shaping for light extraction enhancement of bulk c-plane light-emitting diodes, Appl. Phys. Express, vol. 5, no. 3, p. 032104, 2012.
146.Y. C. Shih, G. Kim, J. P. You, and F. G. Shi, “Optical interaction between LED backside reflectors and die attach adhesives, IEEE Photon. Technol. Lett., vol. 28, no. 13, pp. 1446-1449, 2016.
147.K. M. Huang, H. J. Chang, C. L. Ho, and M. C. Wu, “Enhanced light extraction efficiency of GaN-based LEDs with 3-D colloidal-photonic-crystal bottom reflector, IEEE Photon. Technol. Lett., vol. 24, no. 15, pp. 1298-1300, 2012.
148.Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction, IEEE J. Quant. Electron., vol. 47, no. 6, pp. 755-761, 2011.
149.X. Zou, Y. Cai, W. C. Chong, and K. M. Lau, “Fabrication and characterization of high-voltage LEDs using photoresist-filled-trench technique, J. Disp. Technol., vol. 12, no. 4, pp. 397-401, 2016.
150.X. Zou, X. Zhang, W. C. Chong, C. W. Tang, and K. M. Lau, “Vertical LEDs on rigid and flexible substrates using GaN-on-Si epilayers and Au-free bonding, IEEE Trans. Electron Devices, vol. 63, no. 4, pp. 1587-1593, 2016.
151.E. Kuramochi, “Manipulating and trapping light with photonic crystals from fundamental studies to practical applications, J. Mater. Chem. C, vol. 4, no. 47, pp. 11032-11049, 2016.
152.J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park, “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars, Appl. Phys. Lett., vol. 93, no. 22, p. 221111, 2008.
153.J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact, Adv. Mater., vol. 20, no. 4, pp. 801-804, 2008.
154.S. P. R. M, H. Park, S. M. Kim, S. H. Jang, and J. S. Jang, “High-performance light-emitting diodes using hierarchical m-plane GaN nano-prism light extractors, J. Mater. Chem. C, vol. 3, no. 34, pp. 8873-8880, 2015.
155.E. K. Kang, Y. M. Song, S. J. Jang, C. I. Yeo, and Y. T. Lee, “Increased light extraction from GaN light-emitting diodes by SiNx compound eyes, IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1118-1121, 2013.
156.J. W. Pan and C. S. Wang, “Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis, Opt. Express, vol. 20, no. S5, pp. A630-A640, 2012.
157.C. H. Lin, H. H. Yen, C. F. Lai, H. W. Huang, C. H. Chao, H. C. Kuo, T. C. Lu, S. C. Wang, and K. M. Leung, “Enhanced vertical extraction efficiency from a thin-film InGaN-GaN light-emitting diode using a 2-D photonic crystal and an omnidirectional reflector, IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 836-838, 2008.
158.H. Y. Ryu, “Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures, Nanoscale Res. Lett., vol. 9, no. 1, p. 58, 2014.
159.D. Lesnic, G. Wakefield, B.D. Sleeman, and J. R. Ockendon, “Determination of the index of refraction of anti-reflection coatings, Mathematics-in-Industry Case Studies J., vol. 2, pp. pp. 155-173, 2010.
160.O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings, Turk. J. Phys., vol. 28, pp. 139-144, 2004.
161.S. J. So and C. B. Park, “Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips, Thin Solid Films, vol. 516, no. 8, pp. 2031-2034, 2008.
162.C. H. Chan, A. Fischer, A. M. Gil, P. Taillepierre, C. C. Lee, S. L. Yang, C. H. Hou, H. T. Chien, D. P. Cai, K. C. Hsu, and C. C. Chen, “Anti-reflection layer formed by monolayer of microspheres, Appl. Phys. B, vol. 100, no. 3, pp. 547-551, 2010.
163.Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, S. Y. Cheng, K. W. Lin, J. K. Liou, and W. C. Liu, “Improved performance of GaN-based light-emitting diodes by using short-period superlattice structures, Prog. Nat. Sci., vol. 20, pp. 70-75, 2010.
164.Y. C. Tu, S. J. Wang, G. Y. Lin, T. H. Lin, C. H. Hung, F. S. Tsai, K. M. Uang, and T. M. Chen, “Enhanced light output of vertical GaN-based LEDs with surface roughened by refractive-index-matched Si3N4/GaN nanowire arrays, Appl. Phys. Express, vol. 7, no. 4, p. 042101, 2014.
165.B. J. Kim, J. Bang, S. H. Kim, and J. Kim, “Enhancement of the light-extraction efficiency of GaN-based light emitting diodes using graded-refractive-index layer by SiO2 nanosphere lithography, J. Electrochem. Soc., vol. 157, no. 4, pp. H449-H451, 2010.
166.Y. K. Ee, P. Kumnorkaew, H. Tong, R. A. Arif, J. F. Gilchrist, and N. Tansu, “Comparison of numerical modeling and experiments of InGaN quantum wells light-emitting diodes with SiO2/polystyrene microlens arrays, Proc. SPIE, vol. 6910, p. 69100M, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊