跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭智仁
研究生(外文):Chih-JenHsiao
論文名稱:以有機化學氣相沉積法成長高品質銻化鎵/砷化鎵異質結構與特性分析及互補式金屬氧化物半導體元件之應用
論文名稱(外文):Growth and Characterization of High Quality GaSb/GaAs Heterostructure by Metal-Organic Chemical Vapor Deposition Method for Post CMOS Application
指導教授:張守進張守進引用關係張翼張翼引用關係
指導教授(外文):Shoou-Jinn ChangEdward Yi Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:108
中文關鍵詞:銻化鎵/砷化鎵異質結構界面錯位差排缺陷排列有機化學氣相沉積系統金屬氧化物半導體電容元件
外文關鍵詞:GaSb/GaAs heterostructureinterfacial misfit dislocation (IMF) arraysMetalorganic chemical-vapor deposition (MOCVD)metal–oxide–semiconductor capacitors (MOSCAPs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究以有機化學氣相沉積法成長高品質銻化鎵/砷化鎵異質結構及互補式金屬氧化物半導體元件之應用。在成長三五族銻化物半導體異質結構中,其錯合差排缺陷扮演著重要的角色,可應用於紅外光光檢測器及超高速、低功率電子元件。由於銻化鎵磊晶層和砷化鎵基板之間具有較大晶格不匹配的問題,造成磊晶層中產生大量的缺陷,以至於元件主動區因缺陷而產生垂直傳遞,導致非輻射複合影響元件特性,而藉由新穎的IMF成長模式可以克服這些問題。我們利用IMF成長模式能夠在砷化鎵基板上成長高品質與高應力鬆弛之銻化鎵磊晶層,而不會產生螺紋狀差排缺陷。此磊晶技術在銻化鎵/砷化鎵異質結構界面處形成90°錯位差排缺陷排列。
我們利用IMF成長模式成長三五族半導體材料與元件之應用,並探討其電性和光學特性。在IMF成長模式中,其Lomer錯位原子位置與相鄰錯位原子之間排列有99%以上的關聯性,藉由X光繞射分析顯示錯合差排缺陷排列與Lomer錯位缺陷幾乎完全相關。在銻化鎵/砷化鎵異質結構初始成長階段,利用銻作為界面處理以改善銻化鎵磊晶層之晶格品質,不僅有效地降低界面表面能,亦可以增加鎵與銻的鍵結能,進而形成二維島狀成長模式。利用上述以銻作為界面處理及藉由IMF成長模式,成長具有高應力鬆弛之銻化鎵於砷化鎵基板上,並改善其光學與電性之特性。同時,利用IMF成長模式成長高品質之超薄銻化鎵磊晶層在砷化鎵基板上,藉由優化成長條件降低其異質結構之表面粗糙度,達到減少載子散射並提高載子遷移率之目的。最後,我們利用碲摻雜於銻化鎵磊晶層中,並成功應用於金屬氧化物半導體電容元件。我們將上述研究結果製作出氧化鋁/銻化鎵/砷化鎵異質結構之金屬氧化物半導體電容元件,此元件具有優異的電容-電壓特性,其頻率散射最低僅有2.8 %。由此證明藉由IMF成長模式可以得到高品質之銻化鎵/砷化鎵異質結構,及銻化物半導體電容元件擁有高載子遷移率,未來亦可應用於p型通道之互補式金屬氧化物半導體元件。
In this thesis, we investigate the growth and application of GaSb/GaAs heterostructure for post Complementary Metal–Oxide–Semiconductor (CMOS). The misfit dislocations play a crucial role in the growth of the high quality Sb-based III-V material heterostructures, which is of great interest for applications in the infrared optoelectronics and high speed low-power consumption electronics. Due to the large lattice mismatch between the GaSb epitaxial layer and the GaAs substrate, large number of defects generate in the epitaxial layer, which vertically propagate to the active regions of devices, thus leads to the non-radiative recombination and deteriorate the device performance. These challenges can be achieved by the introduction of a novel epitaxial growth mode, called interfacial misfit dislocation arrays (IMF) growth mode. This growth mode enables the epitaxial growth of a high quality, relaxed GaSb epilayer on a GaAs substrate without the creation of residual threading dislocations (TDs). The IMF achieves the flat surface through the creation of 90° misfit dislocations (MDs) at the GaSb/GaAs interface.
The structural, electrical, and optical characterization of the IMF-based material and fabricated devices all presented. High resolution X-ray diffraction (HR-XRD) data and the dislocation network density is nearly correlated, i.e. there is over 99% correlation between the location of one Lomer dislocation in the IMF array and its adjacent dislocations. Further evidence is given that the interfacial treatments applied in the initial strain relaxation of GaSb/GaAs hererostructure, the Sb interfacial treatment promotes the formation of strong Ga-Sb bonds on the surface of the grown island, which effectively reduces the interfacial free energy and thus promotes the formation of 2D islands. The GaSb epilayers on GaAs substrate were strain relaxed and exhibited enhanced electrical properties and optical properties. Meanwhile, the IMF growth mode has also been applied for the growth of high quality ultrathin-10nm-thick GaSb epilayer on GaAs substrate, which is essential for ultrathin body MOSFET. By optimizing the growth conditions, the surface roughness of the ultrathin GaSb/GaAs heterostructure was reduced, resulting in reduced carrier scattering and improved electronic properties. Finally, we have demonstrated the growth of a high-quality n-type doped GaSb/GaAs heterostructure based Metal–Oxide–Semiconductor Capacitor (MOSCAP). The n-GaSb MOSCAP fabricated shows exhibits excellent capacitance–voltage (C–V) characteristics with small frequency dispersion of approximately 2.8%/decade, proving that high quality GaSb/GaAs heterostructure can be obtained using the proposed IMF growth mode. The results demonstrate the potential of high-mobility Sb-based material on GaAs for post p-type channel CMOS applications in the future.
摘要 I
Abstract IV
致謝 VII
Table Captions XII
Figure Captions XIII
Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Material Growth of GaSb/GaAs Heterostructure 3
1-3 Physical Mechanism of GaSb/GaAs Heterostructure 5
1-3-1 Surface free energy 5
1-3-2 Interfacial Misfit Dislocation (IMF) Arrays 6
1-3-3 Interfacial Treatment 7
1-4 Organization of the Thesis 9
References 15
Chapter 2 Metal-Organic Chemical Vapor Deposition (MOCVD) System, Experimental Procedure and Characterization Methods 17
2-1 Introduction 17
2-2 Metal-Organic Chemical Vapor Deposition (MOCVD) System 18
2-3 Growth Mechanism of MOCVD 19
2-4 Fundamentals of Characterization Techniques 22
2-4-1 Atomic Force Microscopy (AFM) 22
2-4-2 Transmission Electron Microscopy (TEM) 25
2-4-3 High-Resolution X-Ray Diffraction (HR-XRD) 27
2-4-4 Photoluminescence Spectroscopy (PL) 29
2-5 Fundamentals of Electrical Measurements 30
2-5-1 Hall Effect Measurement 30
2-5-2 Capacitance-Voltage (C-V) and Conductance-Voltage (G-V) Measurements 32
References 39
Chapter 3 Formation of Strain-Relieved GaSb/GaAs Type-II Quantum Dots by Using Interfacial Misfit Dislocation Arrays 40
3-1 Introduction 40
3-2 Experiments 41
3-3 Effects of Ga and Sb Interfacial Treatments 42
3-4 Effects of Ga Interfacial Treatment 43
3-4-1 Effects of Ga Flux 43
3-4-2 Effects of Ga Flow Time 44
3-5 Effects of Sb Interfacial Treatment 45
3-5-1 Effects of Sb Flux 45
3-5-2 Effects of Sb Flow Time 47
3-6 Summary 48
References 56
Chapter 4 High Quality GaSb Layer Grown on GaAs Substrate by Interfacial-Treatment-Assisted Chemical Vapor Deposition 59
4-1 Growth of Strain-Relieved GaSb Layer on GaAs Substrate 59
4-2 Structure and Physical Properties 60
4-3 Optical and Electrical Properties 63
4-4 Summary 65
References 71
Chapter 5 Growth of Ultrathin GaSb Layer on GaAs Using Metal–Organic Chemical Vapor Deposition 73
5-1 Introduction 73
5-2 Experiments 75
5-3 Structure and Physical Properties 75
5-4 Electrical and Physical Properties 78
5-5 Summary 80
References 86
Chapter 6 Effect of Doping Concentration on GaSb/GaAs Heterostructure for MOSCAPs 88
6-1 Introduction 88
6-2 Experiments 89
6-3 Structure and Electrical Properties 90
6-4 Optical and Physical Properties 91
6-5 Al2O3/GaSb/GaAs Heterostructure for MOSCAPs 93
6-6 Summary 94
References 101
Chapter 7 Conclusion and Future Work 104
7-1 Conclusion 104
7-2 Future Work 105
References 108
Chapter 1
References
[1]R. M. Biefeld, Mater. Sci. and Eng. R 36, 105 (2002).
[2]B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, Sol. Stat. Elec. 49, 1875 (2005).
[3]H. Kroemer, Physica E. 20, 196 (2004).
[4]C. B. Cooper, R. R. Saxena, and M. J. Ludowise, J. Electron. Mater. 11, 1001 (1982).
[5]T. Koljonen, M. Sopanen, H. Lipsanen, and T. Tuomi, J. Electron. Mater.24, 1691 (1995).
[6]C. A Wang, S. Salim, K. F. Jensen, and A. C Jones, J. Crystal Growth 170, 55 (1997).
[7]A. A. Khandekar, G. Suryanarayanan, S. E. Babcock, and T. F. Kuech, J. Cryst. Growth 292, 40 (1997).
[8]Y. Wang, P. Ruterana, S. Kret, S. El Kazzi, L. Desplanque, and X. Wallart , Appl. Phys. Lett. 102, 052102 (2013).
[9]B. R. Bennett, P. M. Thibado, M. E. Twigg, E. R. Glaser, R. Magno, B. V. Shanabrook, and L. J. Whitman, J. Vac. Sci. Technol. B 14, 2195 (1996).
[10]L. Müller-Kirsch, R. Heitz, U. W. Pohl, and D. Bimberg, Appl. Phys. Lett. 79, 1027 (2001).
[11]R. Timm, H. Eisele, A. Lenz, S. K. Becker, J. Grabowski, T. Y. Kim, L. Müller-Kirsch, K. Pötschke, U. W. Pohl, D. Bimberg, and M. Dähne, Appl. Phys. Lett. 85, 5890 (2004).
[12]A. Jallipalli, G. Balakrishnan, S. H. Huang, L. R. Dawson, and D. L. Huffaker, J. Cryst. Growth 303, 449 (1997).
[13]K. M. Gambaryan, Armenian J. Phys. 1, 247 (2008).
[14]John A. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge (2000).
[15]H. P. Bonzel, Progr. Surf. Sci. 67, 45 (2001).
[16]J. J. Métois, and J. C. Heyraud, Surf. Sci. 446, 127 (2000).
[17]R. J. Jacodine, J. Electrochem. Soc. 110, 524 (1963).
[18]A. Yu Babkevich, R. A. Cowley, N. J. Mason, and A. Stunault, J. Phys. Condens. Matter 12, 4747 (2000).
[19]A. Rocher, Solid State Phenomena. 19/20, 563 (1991).
[20]M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Phys. Rev. Lett. 63, 632 (1989).
[21]C. M. Fetzer, R. T. Lee, J. K. Shurtleff, G. B. Stringfellow, S. M. Lee, and T. Y. Seong, Appl. Phys. Lett. 76, 1440 (2000).
[22]G. B. Stringfellow, C. M. Fetzer, R. T. Lee, S. W. Jun, and J. K. Shurtleff, MRS Proceedings 583, 201 (2000).
[23]S. N. Filimonov, V. Cherepanov, N. Paul, H. Asaoka, J. Brona, and B. Voigtlander, Surf. Sci. 599, 76 (2005).
[24]G. B. Stringfellow, J. K. Shurtleff, R. T. Lee, C. M. Fetzer, and S. W. Jun, J. Cryst. Growth 221, 1 (2000).
[25]B. Voigtländer, and A. Zinner, Surf. Sci. 351, 233 (1996).

Chapter 2
References
[1]S. M. Sze, Semiconductor Devices Physics and Technology, Wiley, NY (2003).
[2]http://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/techniques/electronic/Hall-effect
[3]https://en.wikipedia.org/wiki/Hall_effect

Chapter 3
References
[1]S. M. Sze, and K. N. Kwok, Physics of semiconductor devices. John Wiley & Sons (2006).
[2]M. Yokoyama, H. Yokoyama, M.Takenaka, and S. Takagi, Appl. Phys. Lett. 106, 073503 (2015).
[3]M. Yokoyama, K. Nishi, S. Kim, H. Yokoyama, M. Takenaka, and S. Takagi, Appl. Phys. Lett.104, 093509 (2015).
[4]A. Sharma, A. A. Goud, and K. Roy, IEEE Electron Device Lett. 35, 1221 (2014).
[5]W. Qian, M. Skowronski, and R. Kaspi, J. Electrochem. Soc. 144, 1430 (1997).
[6]A. M. Rocher, Solid State Phenom. 19 , 563 (1991).
[7]S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
[8]A. Jallipalli, G. Balakrishnan, S. H. Huang, T. J. Rotter, K. Nunna, B. L. Liang,and D. L. Huffaker, Nanoscale Res. Lett. 4, 1458 (2009).
[9]W. Zhou, X. Li, S. Xia, J. Yang, W. Tang, and K. M. Lau, J. Mater. Sci. Technol. 28, 132 (2012).
[10]S. El Kazzi, L. Desplanque, C. Coinon, Y. Wang, P. Ruterana, and X. Wallart, Appl. Phys. Lett. 97, 192111 (2010).
[11]C. Jiang, and H. Sakaki, Physica E Low Dimens. Syst. Nanostruc. 32, 17 (2006).
[12]J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, L. R. Dawson, G. Balakrishnan, and D. L. Huffaker, Appl. Phys. Lett. 89, 203116 (2006).
[13]E. A. Anyebe, M. K. Rajpalke, T. D. Veal, C. J. Jin, Z. M. Wang, and Q. D. Zhuang, Nano Res. 8, 1309 (2015).
[14]Z. X. Yang, N. Han, M. Fang, H. Lin, H. Y. Cheung, S. Yip, E. J. Wang, T. Hung, C. Y. Wong, and J. C. Ho, Nature Commun. 5, 5249 (2014).
[15]J. Steinshnider, J. Harper, M. Weimer, C. H. Lin, S. S. Pei, and D. H. Chow, Phys. Rev. Lett. 85, 4562 (2000).
[16]D. P. Woodruff, and J. Robinson, J. Phys. Condens. Matter 12, 7699 (2000).
[17]B. Voigtländer, A. Zinner, T. Weber, and H. P. Bonzel, Phys. Rev. B 51, 7583 (1995).
[18]H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, F. Briones, and E. E. Haller, Nature 408, 69 (2000).
[19]M. Kunrugsa, S. Kiravittaya, S. Panyakeow, and S. Ratanathammaphan, J. Cryst. Growth 402, 285 (2014).
[20]J. Tatebayashi, B. Liang, D. Bussian, H. Htoon, S. H. Huang, G. Balakrishnan, V. Klimov, R. Dawson, and D. L. Huffaker, IEEE Trans. Nanotechnol. 8, 269 (2009).
[21]G. Balakrishnan, J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, A. Jallipalli, L. R Dawson, and D. L. Huffaker, Appl. Phys. Lett. 89, 161104 (2006).
[22]Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002).
[23]C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. F. i Morral, Phys. Rev. B 77, 155326 (2008).
[24]B. Liang, A. Lin, N. Pavarelli, C. Reyner, J. Tatebayashi, K. Nunna, J. He, T. J. Ochalski, G. Huyet, and D. L. Huffaker, Nanotechnology 20, 455604 (2009).
[25]M. Bozkurt, J. M. Ulloa, and P. M. Koenraad, Semicond. Sci. Tech. 26, 064007 (2011).
[26]E. A. El-Wahabb, S. S. Fouad, and M. Fadel, J. Mater. Sci. 38, 527 (2003).
[27]B. M. Borg, and L. E. Wernersson, Nanotechnology 24, 202001 (2013).
[28]S. El Kazzi, L. Desplanque, X. Wallart, Y. Wang, and P. Ruterana, J. Appl. Phys. 111, 123506 (2012).
[29]J. K. Shurtleff, S. W. Jun, and G. B. Appl. Phys. Lett. 78, 3038 (2001).
[30]K. A. Dick, S. Kodambaka, M. C. Reuter, K. Deppert, L. Samuelson, W. Seifert, L. R. Wallenberg, and F. M. Ross, Nano Lett. 7, 1817 (2007).

Chapter 4
References
[1]B. M. Kinder, and E. M. Goldys, Appl. Phys. Lett. 73, 1233 (1998).
[2]K. Suzuki, R. A. Hogg, K. Tachibana, and Y. Arakawa, Jpn. J. Appl. Phys. 37, 203 (1998).
[3]J. Narayan, and S. Oktyabrsky, J. Appl. Phys. 92, 7122 (2002).
[4]S. A. Chaparro, Y. Zhang, and J. Drucker, Appl. Phys. Lett. 76, 3534 (2000).
[5]U. Denker, O. G. Schmidt, N. Y. Jin-Philipp, and K. Eberl, Appl. Phys. Lett. 78, 3723 (2001).
[6]V. H. Nguyen, A. Dobbie, M. Myronov, and D. R. Leadley, J. Appl. Phys. 114, 154306 (2013).
[7]E. T. R. Chidley, S. K. Haywood, A. B. Henriques, N. J. Mason, R. J. Nicholas, and P. J. Walker, Semicond. Sci. Tech. 6, 45 (1991).
[8]C. Agert, P. S. Gladkov, and A. W. Bett, Semicond. Sci. Tech. 17, 39 (2002).
[9]S. C. Chen, and Y. K. Su, J. Appl. Phys. 66, 350 (1989).
[10]R. D. Wiersma, J. A. H. Stotz, O. J. Pitts, C. X. Wang, M. L. W. Thewalt, and S. P. Watkins, Phys. Rev. B 67, 165202 (2003).
[11]Y. J. Van der Meulen, J. Phys. Chem. Solids 28, 25 (1967).
[12]G. R. Johnson, B. C. Cavenett, T. M. Kerr, P. B. Kirby, and C. E. C. Wood, Semicond. Sci. Tech. 3, 1157 (1988).
[13]S. S. Miya, V. Wagener, and J. R. Botha, Electron. Mater. Lett. 10, 373 (2014).
[14]W. Zhou, X. Li, S. Xia, J. Yang, W. Tang, and K. M. Lau, J. Mater. Sci. Technol. 28, 132 (2012).

Chapter 5
References
[1]A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, IEEE Trans. Electron Devices 58, 3407 (2011).
[2]H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. Y. Chen, M. Madsen, A. C. Ford, Y. L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, Nature 468, 286 (2010).
[3]O. Yastrubchak, T. Wosiński, E. Łusakowska, T. Figielski, and A. L. Tóth, Microchimica Acta 145, 267 (2004).
[4]A. Jallipalli, G. Balakrishnan, S. H. Huang, L. R. Dawson, and D. L. Huffaker, J. Cryst. Growth 303, 249 (2008).
[5]S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
[6]A. Jallipalli, G. Balakrishnan, S. H. Huang, T. Rotter, K. Nunna, B. Liang, L. R. Dawson, and D. L. Huffaker, Nanoscale Res. Lett. 4, 1458 (2009).
[7]J. H. Kim, T. Y. Seong, N. J. Mason, and P. J. Walker, J. Electron. Mater. 27, 466 (1998).
[8]W. Qian, M. Skowronski, and R. Kaspi, J. Electrochem. Soc. 144, 1430 (1997).
[9]R. E. Mallard, P. R. Wilshaw, N. J. Mason, P. J. Walker, and G. R. Booker, Microsc. Semiconduct. Materi. 100, 331 (1989).
[10]B. Voigtländer, and A. Zinner, Surface Sci. Lett. 292, 775 (1993)
[11]M. Bozkurt, J. M. Ulloa, and P. M. Koenraad, Semicond. Sci.and Technol. 26, 064007 (2011).
[12]B. Voigtländer, A. Zinner, T. Weber, and H. P. Bonzel, Phys. Review B 51, 7583 (1995).
[13]J. Tatebayashi, B. Liang, D. Bussian, H. Htoon, S. H. Huang, G. Balakrishnan, V. Klimov, R. Dawson, and D. L. Huffaker, IEEE Trans. Nanotechnol. 8, 269 (2009)
[14]G. Balakrishnan, J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 89, 161104 (2006).
[15]S. El Kazzi, L. Desplanque, X. Wallart, Y. Wang, and P. Ruterana, J. Appl. Phys. 111, 123506 (2012).
[16]J. K. Shurtleff, S. W. Jun, and G. B. Stringfellow, Appl. Phys. Lett. 78, 3038 (2001).
[17]O. Suekane, S. Hasegawa, M. Takata, T. Okui, and H. Nakashima, Mater. Sci. Eng. B 88, 158 (2002).
[18]C. H. Henager, and R.G. Hoagland, Scripta Materialia 50, 701 (2004).
[19]M. Kushibe, K. Eguchi, M. Funamizu, and Y. Ohba, Appl. Phys. Lett. 56, 1248 (1990).
[20]R. A. Burke, X. Weng, M. W. Kuo, Y. W. Song, A.M. Itsuno, T. S. Mayer, S. M. Durbin, R. J. Reeves and, J. M. Redwing, J. Electron. Mater. 39, 355 (2010).
[21]T. Yamanaka, S. J. Fang, H. C. Lin, J. P. Snyder and C. R. Helms, IEEE Electron Device Lett. 17, 178 (1996).
[22]Y. Matsumoto, and Y. Uemura, Jpn. J. Appl. Phys. 2, 367 (1974).

Chapter 6
References
[1]M. Xu, R. Wang, and P. D. Ye, IEEE Electron Device Lett. 32, 883 (2011).
[2]J. A. del Alamo, Nature 479, 317 (2011).
[3]R. Chau, B. Doyle, S. Datta, J. Kavalieros, and K. Zhang, Nature Mater. 6, 810 (2007).
[4]A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, IEEE Trans. Electron Devices 58, 3407 (2011).
[5]M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, and R. Chau, Tech. Dig. – Int. Electron Devices Meet., 319 (2009).
[6]M. Xu, Y. Q. Wu, and P. D. Ye, IEEE Electron Device Lett. 29, 294 (2008).
[7]R. J. W. Hill, D. A. J. Moran, X. Li, H. P. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and I. G. Thayne, IEEE Electron Device Lett. 28, 1080 (2007).
[8]M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, Tech. Dig. – Int. Electron Devices Meet., 727 (2008).
[9]A. Nainani, S. Raghuanathan, D. Witte, M. Kobayashi, T. Irisawa, T. Krishnamohan, and K. Saraswat, Tech. Dig. – Int. Electron Devices Meet., 857 (2009).
[10]M. Passlack, J. K. Abrokwah, R. Droopad, Z. Y. Yu, C. Overgaard, S. I. Yi, M. Hale, J. Sexton, and A. C. Kummel, IEEE Electron Device Lett. 23, 508 (2002).
[11]H. D. Trinh, E. Y. Chang, P. W. Wu, Y. Y. Wong, C. T. Chang, Y. F. Hsieh, C. C. Yu, H. Q. Nguyen, Y. C. Lin, K. L. Lin, and M. K. Hudait, Appl. Phys. Lett. 97, 042903 (2010).
[12]H. Q. Nguyen, E. Y. Chang, H. W. Yu, H. D. Trinh, C. F. Dee, Y. Y. Wong, C. H. Hsu, B. T. Tran, and C. C. Chung, Appl. Phys. Exp. 5, 055503 (2012).
[13]C. A. Wang, K. F. Jensen, A. C. Jones, and H. K. Choi, Appl. Phys. Lett. 68, 400 (1996).
[14]R. R. Wixom, L. W. Rieth, and G. B. Stringfellow, J. Cryst. Growth 269, 276 (2004).
[15]A. Chandola, R. Pino, and P. S. Dutta, Semicond. Sci. Technol. 20, 886 (2005).
[16]H. Ehsani, I. Bhat, C. Hitchcock, R. J. Gutmann, G. Charache, and M. Freeman, J. Cryst. Growth 195, 385 (1998).
[17]C. J. Hsiao, M. T. H. Ha, C. Y.Hsu, Y. C. Lin, S. P. Chang, S. J. Chang, and E. Y. Chang, Appl. Phys. Exp. 9, 095502 (2016).
[18]A. Bignazzi, A. Bosacchi, and R. Magnanini, J. Appl. Phys. 81, 7540 (1997).
[19]A. H. Ramelan, P. Arifin, and E. Goldys, Int. J. Mater. Res. 102, 1403 (2011).
[20]S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
[21]A. Jallipalli, G. Balakrishnan, S. H. Huang, T. Rotter, K. Nunna, B. Liang, L. R. Dawson, and D. L. Huffaker, Nanoscale Res. Lett. 4, 1458 (2009).
[22]D. Esseni, and M. G. Pala, IEEE Trans. on Electron Devices 60, 2802 (2013).
[23]É. O'Connor, K. Cherkaoui, S. Monaghan, B. Sheehan, I. M. Povey, and P. K. Hurley, Appl. Phys. Lett. 110, 032902 (2017).
[24]H. D. Trinh, Y. C. Lin, M. T. Nguyen, H. Q. Nguyen, Q. V. Duong, Q. H. Luc, S. Y. Wang, M. N. Nguyen, and E. Y. Chang, Appl. Phys. Lett. 103, 142903 (2013).
[25]Y. Yu, W. Lingquan, Y. Bo, S. Byungha, A. Jaesoo, P. C. Mcintyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, IEEE Electron Device Lett. 32, 485 (2011).
[26]Y. C. Lin, M. L. Huang, C. Y. Chen, M. K. Chen, H. T. Lin, P. Y. Tsai, C. H. Lin, H. C. Chang, T. L. Lee, C. C. Lo, S. M. Jang, C. H. Diaz, H. Y. Hwang, Y. C. Sun, and E. Y. Chang, Appl. Phys. Exp. 7, 041202 (2014).

Chapter 7
References
[1]D. G. Deppe, N. Holonyak Jr., K. C. Hsieh, D. W. Nam, W. E. Plano, R. J. Matyi, and H. Sichijo, Appl. Phys. Lett. 52, 1812 (1988).
[2]K. K. Linder, J. Phillips, O. Qasaimeh, X. F. Liu, S. Krishna, P. Bhattacharya, and J. C. Jiang, Appl. Phys. Lett. 74, 1355 (1999).
[3]M. E. Groenert, C.W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, J. Appl. Phys. 93, 362 (2003).
[4]O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, J. Appl. Phys. 100, 013103 (2006).
[5]G. Balakrishnan, S. Huang, L. R. Dawson, Y.-C. Xin, P. Conlin, and D. L. Huffaker, Appl. Phys. Lett. 86, 034105 (2005).
[6]R. M. Sieg, S. A. Ringel, S. M. Ting, S. B. Samavedam, M. Currie, T. Langdo, and E. A. Fitzgerald, J. Vac. Sci. Tech. B 16, 1471 (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top