(3.238.186.43) 您好!臺灣時間:2021/02/28 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂鑫豪
研究生(外文):Hsin-HouLu
論文名稱:氮化鎵/氮化鋁鎵異質結構之金-半與金-氧半式氫氣感測器之研製
論文名稱(外文):Fabrication of Metal-Semiconductor (MS) and Metal-Oxide-Semiconductor (MOS) Type Hydrogen Sensors Based on GaN/AlGaN Heterostructures
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:153
中文關鍵詞:表面處理過氧化氫氫氣感測器無電鍍蕭特基二極體二氧化鉿敏化活化粗糙度
外文關鍵詞:Surface treatmenthydrogen peroxidePalladiumHydrogen sensorElectroless PlatingSchottky diodeHafnium(IV) oxidesensitizationactivationroughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,吾人研製一系列氮化鎵/氮化鋁鎵蕭特基二極體式氫氣感測器之元件,以鈀金屬製作蕭特基接觸金屬,用以感測氫氣。本研究將元件曝露在不同濃度的氫氣環境下,並探討比較元件經過氧化氫表面處理及未經表面處理之氣體感測特性。
首先,研究具二氧化鉿結構之鈀/二氧化鉿/氮化鎵/氮化鋁鎵蕭特基二極體式氫氣感測器。利用射頻濺鍍技術將二氧化鉿氧化層於鈀感測層與氮化鎵之間,以形成鈀/二氧化鉿/氮化鎵(金屬/氧化物/半導體)的氫氣感測器,藉此來降低空氣中的穩態電流,使得氣體感測性能大幅提升,因此,以氮化鎵為基底具有高品質且薄之絕緣層的的感測器能提供重大的氫氣感應潛能性。本文利用熱離子放射方程式描述感測器於氫氣環境下之電壓-電流特性,經由該方程式求得二極體之蕭特基位障高,並且可以觀察到其會隨著不同濃度之氫氣而改變。另外,我們可以從此感測器求得二極體參數、感測響應、響應時間方面去探討元件之氫氣感測行為。
其次,我們利用過氧化氫對氮化鎵表面進行氧化反應,形成自然氧化層(GaOx)增加了蕭特基能障,主要目的在於探討具有過氧化氫表面處理及未經表面處理之氣體感測特性,藉此降低空氣中的穩態電流並提升氣體感測之靈敏度。
接著,我們以化學式無電鍍法製備具特殊表面處理之鈀/氮化鎵/氮化鋁鎵蕭特基二極體式氫氣感測器,探討以化學式無電鍍製備對感測元件之金屬-半導體接觸品質和表面粗糙度之影響,以化學式無電鍍法製備出的感測元件相較於傳統物理性蒸鍍法製備的元件,此方法能有效改善費米能階釘住效應與增加表面粗糙度,使得無電鍍二極體具備較佳之整流特性,擁有較低之反向漏電流。另外,用AFM觀察可得知,無電鍍鈀表面具有較高之粗糙度,更有利於感測氫氣,並且利用熱離子放射方程式描述感測器於氫氣環境下之電壓-電流特性,經由該方程式求得二極體之蕭特基位障高度 (Schottky barrier height),並可以觀察到其會隨著不同濃度之氫氣而改變。另外,我們可以從此感測器求得二極體參數、感測響應、響應時間,並藉由氫氣吸附之響應速率式進而求得其活化能。
In this thesis, a series of GaN/AlGaN Schottky diode based hydrogen sensors have been fabricated and studied. Pd was chosen as Schottky contacts metal to detect hydrogen gas. Hydrogen sensing behaviors of the studied devices are investigated by sensing response and response time under different gas concentrations, and we compare the gas sensing properties of devices with and without H2O2 treatment.
First, Pd/HfO2/GaN/AlGaN Schottky diode-type hydrogen sensor is fabricated and studied. Using RF sputtering to deposite HfO2 between Pd and GaN. HfO2 layer can decrease steady current in air to improve gas sensing capability. So, based on GaN and high quility insulator gas sensor to provide important potential. The thermionic emission (TE) equaiton is employed to characterize the current voltage behaviors of studied M-O-S device upon introduction of hydrogen gases. The schottky barrier height extracted from the TE equation is observe to be sensitive to hydrogen gases under various concentrations. Hydrogen sensing behavoirs of the studied M-O-S device are investigated in terms of those diode paraments, sensing responses, and response times.
Second, Using hydrogen peroxide to conduct oxidation reaction on the GaN/AlGaN surface. Based on the strong oxidation property, a thin GaOx layer could be formed by an appropriate immersion of H2O2 solution. The formed GaOx layer increases the Schottky barrier height, effective adsorption sites and remarkably improves the related hydrogen gas sensing capability.
Third, a chemically electroless plated (EP)-Pd/GaOx/GaN/AlGaN Schottky diode-type hydrogen sensor is fabricated and studied. Using this method can improve fermi level pinning and increase surface rougheness. Therefore, the EP-based Schottky diode have excellent rectification ratio and lower reverse saturation current. Otherwise, based on EP Pd films have higher surface rougheness through AFM, and its can be beneficial to detection hydrogen. The thermionic emission (TE) equaiton is employed to characterize the current voltage behaviors of studied EP device upon introduction of hydrogen gases. The schottky barrier height extracted from the TE equation is observe to be sensitive to hydrogen gases under various concentrations. Hydrogen sensing behavoirs of the studied EP device are investigated in terms of those diode paraments, sensing responses, response times, activation enegy.
Contents
Table Captions
Figure Captions
Chapter 1 Introduction
1-1. Hydrogen Sensors 1
1-1-1. Demand of hydrogen energy and sensors 1
1-1-2. Schottky diode-type sensors 2
1-1-3. Promotion of thin film plating technique 4
1-1-4. Passivation effect of insulator or oxide layer 5
1-2. Thesis Organizations 5
Chapter 2 Fabrication of Pd/HfO2/GaN/AlGaN Schottky Diode-Type Hydrogen Sensor
2-1. Introduction 7
2-2. Device Fabrication 10
2-3. Experimental Results and Discussion 11
2-3-1. Surface Analysis 11
2-3-2. Electrical Properties Analysis 12
2-3-3. Hydrogen Detection Mechanism 14
2-3-4. Hydrogen Sensing Performance 15
2-3-5. Transient Responses 15
2-3-6. Hydrogen gas sensing with humidity ambient 16
2-4. Equilibrium of hydrogen adsorption 18
2-4-1. Langmuir isotherm analysis 18
2-4-2. The kinetic behavior of hydrogen adsorption 22
2-5. Summary 25
Chapter 3 Fabrication of Pd/HfO2/GaN/AlGaN Schottky Diode-Type Hydrogen Sensor with Special Surface Treatment
3-1. Introduction 26
3-2. Device Fabrication 27
3-3. Experimental Results and Discussion 28
3-3-1. Surface Analysis 28
3-3-2. Electrical Properties Analysis 29
3-3-3. Hydrogen Detection Mechanism 30
3-3-4. Hydrogen Sensing Performance 30
3-3-5. Transient Responses 31
3-3-6. Hydrogen gas sensing with humidity ambient 32
3-4. Equilibrium of hydrogen adsorption 34
3-4-1. Langmuir isotherm analysis 34
3-4-2. The kinetic behavior of hydrogen adsorption 34
3-5. Summary 35
Chapter 4 Fabrication of Pd/GaOx/GaN/AlGaN Schottky Diode-Type Hydrogen Sensor by Electroless Plating
4-1. Introduction 37
4-2. Device Fabrication 41
4-3. Experimental Results and Discussion 42
4-3-1. Surface Analysis 43
4-3-2. Electrical Properties Analysis 44
4-3-3. Hydrogen Detection Mechanism 45
4-3-4. Hydrogen Sensing Performance 46
4-3-5. Transient Responses 46
4-3-6. Hydrogen gas sensing with humidity ambient 48
4-4. Equilibrium of hydrogen adsorption 50
4-4-1. Langmuir isotherm analysis 50
4-4-2. The kinetic behavior of hydrogen adsorption 50
4-5. Summary 52
Chapter 5 Conclusion and Future Works
5-1. Conclusion 53
5-2. Future Works 54
References 56
Tables 69
Figures 79
References
[1]N. Yamazoe, “Toward innovations of gas sensor technology, Sens. Actuators B, vol.108, pp. 2-14, 2005.
[2]T. M. Weast, “Handbook of Chemistry and Physics, p. F-35, Cleveland:CRC press, 1976.
[3]W. Gopel, J. N. Zemel, “Sensors, vol.1, ch10, Weinheim:VCH press, 1991.
[4]A. Mandelis and C. Christofides, “Physics, chemistry and technology of soild state gas sensor devices, ch3, New York : John Wily & Sons, 1993.
[5]E. F. Mucullen, H. E. Prakasam, W. Mo, R. Naik, K. Y. S. Ng, L. Rimai, and G. W. Auner, “Electrical characterization of metal/AlN/Si thin film hydrogen sensors with Pd and Al gates, J. Appl. Phys., vol. 93, pp. 5757-5762, 2003.
[6]I. Lundström, H. Sundgren, F. Winquist, M. Eriksson, C. K. Rülcker, and A. L. Spetz,Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B, vol. 121, pp. 247-262, 2007.
[7]D. E. Williams, “Semiconducting oxides as gas-sensitive resistors, Sens. Actuators B, vol. 57, pp. 1-16, 1999.
[8]B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, and T. Wang, “ High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barrierst, Nanoscale, vol. 5, pp. 2505-2510, 2013.
[9]P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector, IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009,1981.
[10]A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC, Sens. Actuators B, vol. 100, pp. 94-98, 2004.
[11]K. Tsukada, T. kiwa, T. Yamaguchi, S. Migitaka, Y. Goto, and K. Yokosawa, “A study of fast response characteristics for hydrogen sensing with platinum FET sensor, Sens. Actuators B, vol. 114, pp. 158-163, 2006.
[12]I. Rýger, G. Vanko, T. Lalinský, P. Kunzo, M. Vallo, I. Vávra, T. Plecenik, “Pt/Nio ring gate based schottky diode hydrogen sensors with enhanced sensitivity and thermal stability, Sens. Actuators B, vol. 202, pp. 1-8, 2014.
[13]I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor, Appl. Phys. Lett., vol. 26, pp. 55-57, 1975.
[14]K. I. Lundström, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS field-effect transistor, J. Appl. Phys., vol. 46, pp. 3876-3881, 1975.
[15]I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor, Appl.Phys. Lett.,26, pp. 55-57, 1975.
[16]I. Lundstrom, M. S. Shivaraman, and C . M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor, J.Appl.Phy., 26(9), pp. 3876-3881, 1975.
[17]H. Y. Nie and Y. Nannichi, “ Pd-on-GaAs Schottky contact: Its barrier height and response to hydrogen, Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991.
[18]L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “ A new hydrogen sensor based on a Pt/GaAs Schottky diode, Sens. Actuators B, vol. 1, pp. 515-518, 1991.
[19]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “ Hydeogen sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor, IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[20]H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor, IEE Electron. Lett., vol. 38, pp. 92-94, 2002.
[21]W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor, IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
[22]K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor, Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
[23]C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-Al0.3Ga0.7As MOS hydrogen sensor, IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
[24]Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes, IEEE Trans. Electron Devices, vol. 50, pp. 2532-2539, 2003.
[25]C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor, IEEE Electron Device Lett., vol. 27, pp. 951-954, 2006.
[26]C. W. Hung, T. H. Tsai, Y. Y. Tsai, K. W. Lin, H. I. Chen, T. P. Chen, and W. C. Liu, “A hydrogen sensor based on an InAlAs material with a Pt catalytic thin film, Phys. Scr. vol. T129, pp. 345-348, 2007.
[27]J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky-diodes, Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
[28]B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection, Sens. Actuators B, vol. 104, pp. 232-236, 2005.
[29]J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes, Sens. Actuators B, vol. 117, pp. 151-158, 2006.
[30]J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diodes hydrogen sensor performance at high temperatures with different catalytic metals, Solid-State Electronics, vol. 49, pp. 1330-1334, 2005.
[31]H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering, J. Vac. Sci. Technol. B, vol.25, pp. 1495-1503, 2007.
[32] H. T. Wang, T. J. Anderson, B. S. Kang, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabrian, “Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts, Appl. Phys. Lett., vol. 90, pp. 252109, 2007.
[33]B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN, Sens. Actu. B, vol. 56, pp. 164-168, 1999.
[34] J. Song, W. Lu, J. S. Flymm, and G. R. Brands, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic matals, Solid-State Electronics, vol. 49, pp. 1330-1330, 2005.
[35] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, “ Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction, J. Appl. Phys., vole. 87, pp. 801-803, 2000.
[36] T. S. Hung, and J. G. Pang, “Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs, Mater. Sci. Eng. B, vol. 49, pp. 144-151, 1997.
[37] A. Imre, E. Gontier-Moya, D. L. Beke, and B. Ealet, “ Auger electron spectro-scopy of the kinetics of evaporation of palladium beaded films from sappaire substrate, Appl. Phys. A, vol. 67, pp. 469-473, 1998.
[38]H. D. Tong, A. H. J. Vanden Berg, J. G. E. Gardeniers, and H. V . Jansen, “Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrance, Thin Solid Fims, vol. 479, pp. 89-94, 2005.
[39] F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, “Interfacial processes in the Pd/a-Ge:H system, Appl. Surf. Sci, vol. 70-71, no. 2, pp. 722-726, 1993.
[40]S. Uemiya, T. Endo, R. Yoshiie, W. Katoh, and T. Kojima, “Fabrication of thin palladium-silver alloy film by using electroplating technique, Mater. Trans., vol. 48, no. 5, pp. 1119-1123, 2007.
[41] D. Baudrand and J. Bengston, MacDermid Inc., Waterbury, amd Conn, “Electroless plating process-developing technologies for electroless nickel, and gold, Metal Finishing, pp. 55-57, 1995.
[42] Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles, IEEE. Electro. Dev. Lett., vol. 26, no. 2, pp. 62-65, 2005.
[43] J. Suehiro, S. I. Hidaka, S. Yamane, and K. Imasaka, “Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor, Sens. Actu. B, vol. 127, pp. 505-511, 2007.
[44] L. Huang, C. S. Chen, Z. D. He, D. K. Peng, and G. Y. Meng, “Palladium membranes supported on porous ceramics prepared by chemical vapor deposition, Thin Soild Films, vol. 302, pp. 98-101, 1997.
[45]T. C. Pluym, S. W. Lyons, Q. H. Powell, A. S. Gurav, and T. T. Kodas, “Palladium metal and palladium oxide particle production by spray pyrolysis, Mater. Research Bulletin, vol. 28, no. 4, pp. 369-376, 1993.
[46] H. I. Chen, and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes, Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
[47] H. I. Chen, Yen. I. Chou, and C. Y. Chu, “A novel high sensitive Pd/InP hydrogen sensor fabricated by electroless plating, Sens. Actu. B, vol. 85, pp. 10-18, 2002.
[48] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique, Semicond .Sci. Technol, vol. 18, pp. 620-626, 2003.
[49]D. Filippini and I. Lundstrom, “Hydrogen detection on bare SiO¬2 between metal gates, J.Appl.Phys., vol. 91, pp. 3896-3903, 2002.
[50] B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jesson, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistor, Appl. Phys. Lett., vol. 84, pp. 4635-4637, 2004.
[51] S. T. Hung, C. J. Chang, C. H. Hsu, B.H. Chu, C. F. Lo, C. C. Hsu, S. J. Pearton, M. R. Holzworth, P. G. Whiting, N. G. Rudawski, K. S. Jones, A. Dabiran, P. Chow P, and F. Ren, “SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications, Int. J. Hydrogen Energ., vol. 37, pp. 13783-13788, 2012.
[52] Q. N. Abdullah, F. K. Yam, J. J. Hassan, C. W. Chin, Z. Hassan, and M. Bououdina, “High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique, Int. J. Hydrogen Energ., vol. 38, pp. 14085-14101, 2013.
[53] B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, S. J. Pearton, “AlGaN/GaNbased metal-oxide-semiconductor diode-based hydrogen gas sensor, Appl. Phys. Lett., vol. 84, pp. 1123-1125, 2004.
[54] B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, S. J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection, Sens. Actuators B., vol. 104, pp. 232-236, 2005.
[55] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, C. T. Lu, “A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor, IEEE Electron. Dev. Lett., vol. 23, pp. 640-642, 2002.
[56] J. P. Xu, P. T. Lai, D. G. Zhong, C. L. Chan, “Improved hydrogen-sensitive properties of MISiC Schottky sensor with thin NO-grown oxynitride as gate insulator, IEEE Electron. Dev. Lett., vol. 24, pp. 13-15, 2003.
[57] C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor, IEEE Electron. Dev. Lett. vol. 27 , pp. 951-954, 2006.
[58] L. Y. Chen, G. W. Hunter, P. G. Neudeck, G. Bansal, J. B. Petit, D. Knight, J. Vac. Sci. Technol., A 15 (1997) 1228.
[59] S. Zangooie, H. Arwin, I. Lundstrom, A.L. Spetz, Mater. Sci. Forum 338 (2000) 1085.
[60] P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzen, I. Lundstrom, IEEE Electron Device Lett. 18 (1997) 287.
[61] J. P. Xu, P. T. Lai, D. G. Zhong, C. L. Chan, IEEE Electron Device Lett. 24 (2003) 13.
[62] W. M. Tang, C. H. Leung, P. T. Lai, J. P. Xu, IEEE Trans. Electron Devices. 53 (2006) 2378.
[63] Yasuhiro Shimizu, Takeo Hyodo, Makoto Egashira, Sens. Actuators, B 121 (2007) 219.
[64] S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, G. Sberveglieri, Sens. Actuators, B 111 (2005) 111.
[65] A. Trinchi, S. Kaciulis, L. Pandolfi, M.K. Ghantasala, Y.X. Li, W. Wlodarski, S. Viticoli, E. Comini, G. Sberveglieri, Sens. Actuators, B 103 (2004) 129.
[66] R.K. Nahar, V. Singh, A. Sharma, J. Mater. Sci. Mater. Electron. 18 (2007) 615.
[67] Bersch, Eric; et al. “Band offsets of ultrathin high-k oxide films with Si. Phys. Rev. B. 78: 085114. doi:10. 1103/PhysRevB. 78. 085114.
[68] Xiaowei C, Xiaoling L, Chao L, Haiyang H, Cheng L, Songyan C, Hongkai L,
Wei H, Jianfang X et al (2016) An improvement of HfO2/Ge interface by insitu remote N2 plasma pretreatment for Ge MOS devices. Materials Research Express 3:035012-035012-5.
[69]Vikram Singh, Satinder K. Sharma, Dinesh Kumar, R.K. Nahar, et al. Study of rapid thermal annealing on ultra thin high-k HfO2 films properties for nano scaled MOSFET technology. Microelectronic Engineering. 2012;91:137-143.
[70] Wang Y, Lin Z, Cheng X, Xiao H, Zhang F, Zou S et al (2004) Study of HfO2
thin films prepared by electron beam evaporation. Appl Surf Sci 228:93–99.
[71] Toledano-Luque M, San Andres E, del Prado A, Martil I, Lucia ML, GonzalezDiaz G, Martinez FL, Bohne W, Rohrich J, Strub E et al (2007) High-pressure reactively sputtered HfO2: composition, morphology, and optical proterties. J Appl Phys 102:044106-044106-8.
[72] Y. C. Yeo, Thin Solid Films 34, 462 (2004).
[73] The International Technology Roadmap For Semiconductors, (ed.) (International Sematch, Austin, TX, 2001).
[74] H. Zhu; C. Tang; L. R. C. Fonseca; R. Ramprasad (2012). “Recent progress in ab initio simulations of hafnia-based gate stacks. Journal of Materials Science. 47: 7399. doi:10.1007/s10853-012-6568-y.
[75] http://www.intel.com/pressroom/archive/releases/2007/20071111comp.htm
[76]Review article by Wilk et al. in the Journal of Applied Physics.
[77] K. L. Lin; et al. (2011). “Electrode dependence of filament formation in HfO2 resistive-switching memory, Journal of Applied Physics. 109: 084104. doi:10.1063/1.3567915.
[78]Very High Temperature Exotic Thermocouple Probes product data, Omega Engineering, Inc., retrieved 2008-12-03.
[79] E. L. Murphy, and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region, Phys. Rev., vol. 102, pp. 1464-1473, 1956.
[80] Schmitz A. C., Ping A. T., Khan M. A., Chen Q., Yang J. W., and Adesida I., “Schottky barrier properties of various metal on n-type GaN, Semiconductor science and technology, vol. 11, pp. 1464-1467.
[81] T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chung, C. W. Hung, L. Y. Chen, T. P. Chen, Y. C. Liu, and W. C. Liu., “ SiO2 passivation effect on the hydrogem adsorption performance of a Pd/AlGaN-based Schottky diode, Sensor Actuator B, vol. 136, pp. 338-343, 2009.
[82] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, “ A study of hydrogen sensing performance of Pt-GaN Schottky diodes, IEEE Sens J., vol. 6, pp. 1115-1119, 2006.
[83] L. P. Petersson, H. M. Dannetun, S. R. Karlsson, and I. Lundstrom, “Surface reaction of Pd studied with a hydrogen sensitive MOS structure and photo-electron spectroscopy, Phys. Scripta, vol. 25, pp. 818-825, 1982.
[84] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices:Observation of large-induced dipoles at the Pd-SiO2 interface, J. Appl. Phys., vol. 78, no. 2, pp. 988-996, 1995.
[85] L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundstrom, “Hydrogen adsorption state at the external and internal palladium surfacesof a palladium-silicon dioxide-silicon structure, J. Appl. Phys., vol. 58, no.1, pp. 404-413, 1985.
[86] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, “Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance, Sensors and Actuators B: Chemical, vol. 138, pp. 422-427, 2009.
[87] T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode, Sens. Actuators B, vol. 129, pp. 292-302, 2008.
[88] P. C. Chou, H. I. Chen, I. P. Liu, C. W. Hung, C. C. Chen, J. K. Liou, “Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor, Sensors and Actuators B: Chemical, vol. 203, pp. 258-262, 2014.
[89] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd, Sensors and Actuators B: Chemical, vol. 83, pp. 195-201, 2002.
[90] H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: Effects of preparation and pretreatment conditions, Sensors and Actuators B: Chemical, vol. 108, pp. 467-472, 2005.
[91] C. F. Lo, C. Y. Chang, B. H. Chu, S. J. Pearton, A. Dabiran, P. P. Chow, and F. Ren, “Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors, Appl. Phys. Lett., vol. 96, pp. 232106, 2010.
[92] T. Y. Chen, H. I. Chen, C. C. Huang, C. S. Hsu, P. S, Chiu, P. C. Chou, R. C. Liu, W. C. Liu, “Hydrogen-Sensing Characteristics of a Pd/GaN Schottky Diode With a Simple Surface Roughness Approach, IEEE Electron Device Letters, vol. 58, pp. 4079-4086, 2011.
[93] H. Y. Liu, W. C. Hsu, C. S. Lee, B. Y. Chou, Y. B. Liao, M. H. Chiang, “Investigation oftemperature-dependent characteristics of AlGaN/GaN MOS-HEMT by using hydrogenperoxide oxidation techniquue, Sens. Actuators B: Chem., vol. 211, pp. 303-309, 2015.
[94] T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, W. C. Liu, “Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode, Int. J. Hydrogen Energy, vol. 33, pp. 2986-2992, 2008.
[95] R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin film palladium and silver alloys and layers for metal-insulator-semiconductor sensors, J. Appl. Phys., vol. 62, pp. 1074-1082, 1987.
[96] Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET, Sens. Actu. B, vol. 33, pp. 96-99, 1996.
[97] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications, Sens. Actuators. B, vol.1, pp.403-426, 1981.
[98] Y. Morita, K. I. Nakamura, and C. Kin, “Langmuir analysis on hydrogen gas response of palladium-gate FET, Sens. Actuators B, vol.33, pp. 96-99, 1996.
[99]L. G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, and NH3 on palladium, Appl. Surf. Sci., vol.27, pp.275-284, 1986.
[100] B. Hellsing, B. Kasemo, and V. P. Zhanov, “Kinetic of the hydrogen-oxygen reaction on platinum, J. Catalysis, vol. 132, pp. 210-228, 1991.
[101]M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environment, J. Appl. Phys., vol.84, pp. 44-51, 1998.
[102] R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th ed., New York, NY: John Wiley & Sons, 2004.
[103]H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode, Sens. Actuators B, vol. 92. pp. 6-16, 2003.
[104]H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode, Sens. Actu. B, vol. 92, pp. 6-16, 2003.
[105]J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices:Observation of large hydrogen-induced at the Pd-SiO2¬ interface, J. Appl. Phys, vol. 78, no. 2, pp. 988-996, 1995.
[106]J. R. Huang, W. C. Hsu, H. I. Chen, W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres, Sens. Actuators B: Chem., vol. 123, no. 2, pp. 1040-1048, 2007.
[107] J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, H. I. Chen, W. C. Liu, “Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode, IEEE Sens. J., vol. 11, pp. 1194-1200, 2011.
[108]R. J. Silbey, and R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th ed., New York, NY:John Wiley & Sons, 2004.
[109]H. Gu, Z. Wang, Y. Hu, “Hydrogen gas sensors based on semiconductor oxide nanostructures, Sensors, vol. 12, pp. 5517-5550, 2012.
[110]Kalanur S. Shankara, I1-Han Yoo, Lee-Ahn Young, Hyungtak Seo,“Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications, Sens. Actuators B: Chem., vol. 221, pp. 411-417, 2015.
[111]C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, and W. C. Liu, “Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET), Sens. Actuators B: Chem., vol. 132, pp. 587-592, 2008.
[112]C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, “Room temperature hydro-gen and hydrocarbon sensors based on single nanowires of metal oxide, J. Phys. D, Appl. Phys., vol. 40, no. 9, pp. 2777-2782, 2007.
[113]H. Miyazaki, T. Hyodo, Y. Shimizu, M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: effects of preparation and pretreatment conditions, Sens. Actuators B: Chem., vol.108, pp. 467–472, 2005.
[114]T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, “Preparation and gas-sensing properties of thermally stable mesoporous SnO2, Sens. Actuators B, Chem, vol. 83, no. 1-3, pp. 209-215, 2002.
[115]J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, et al., “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al 0.3 Ga 0.7 as Schottky diodes, Sens. Actuators B: Chem., vol. 117, pp. 151-158, 2006.
[116]B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN, Sens. Actuators B, Chem, vol. 56, no. 1/2, pp. 164-168, 1999.
[117]T. Y. Chen, H. I. Chen, C. C. Huang, C. S. Hsu, P. S, Chiu, P. C. Chou, R. C. Liu, W. C. Liu, “Hydrogen-Sensing Characteristics of a Pd/GaN Schottky Diode With a Simple Surface Roughness Approach, IEEE Electron Device Letters, vol. 58, pp. 4079-4086, 2011.
[118]H. Y. Liu, W. C. Hsu, C. S. Lee, B. Y. Chou, Y. B. Liao, M. H. Chiang, “Investigation of temperature-dependent characteristics of AlGaN/GaN MOS-HEMT by using hydrogen peroxide oxidation techniquue, Sens. Actuators B: Chem., vol. 211, pp. 303-309, 2015.
[119] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “Novel oxide-passivated AlGaN/GaN HEMT by using hydrogen peroxide treatment, IEEE Trans. Device Mat. Rel., vol. 58, pp. 4430-4433, 2011.
[120] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “A simple gate-dielectric fabrication process for AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors, IEEE Electron Device Letters, vol. 33, pp. 997-999, 2012.
[121]C. C. Chen, H. I. Chen, H. Y. Liu, P. C. Chou, J. K. Liou, and W. C. Liu, “On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment, Sens Actuators B: Chem, vol. 209, pp. 658-663, 2015.
[122]C. C. Chen, H. I. Chen, I. P. Liu, H. Y. Liu, P. C. Chou, J. K. Liou, and W. C. Liu, “Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment, Sens. Actuators B: Chem., vol. 211, pp. 303-309, 2015.
[123]H. I. Chen, K. C. Chuang, C. H. Chang, W. C. Chen, I. P. Liu, and W. C. Liu, “Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-base Schottky diode, Sens. Actuators B: Chem., vol. 246, pp. 408-414, 2017.
[124] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “Characteristics of a Pd/AlGaN/GaN Transistor processed using the sensitization, activation, and electroless plating (EP) approaches, J. Electrochem. Soc., vol. 159, pp. D637-D641, 2012
[125] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “On an electroless plating (EP)-based Pd/AlGaN/GaN Heterostructure field- effect transistor (HFET)-type hydrogen gas sensor, IEEE Electron Device Lett. vol. 33, pp. 788-790, 2012.
[126] C. C. Huang, H. I. Chen, I. P. Liu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C.Liu, “Comprehen-sive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET), Sens. Actuators B: Chem., vol. 190, pp. 913-921, 2014.
[127] C. C. Chen, H. I. Chen, I. P. Liu, P. C. Chou, J. K. Liou, C. C. Huang, and W. C. Liu, “Hydrogen sensing characteristics of a Pt/AlGaN/GaN heterostructure field-effect transistor (HFET) prepared by sensitization, activation, and electroless plating (EP) approaches, Sens. Actuators B: Chem., vol. 212, pp. 127-136, 2015.
[128]Z. Shi, S. Wu, J. A. Szpunar, M. Roshd, “An observation of palladium formation on a porous stainless steel substrate by electroless deposition, J. Membr. Sci., vol. 280, pp. 705-711, 2006.
[129] K. L. Yeung, S. C. Christiansen, and A. Varma, “Palladium composite mem-branes by electroless plating technique Relationship between plating kinetics, film micro structure and membrane performance, J. Member. Sci., vol. 159, pp. 107-122, 1999.
[130] Z. Shi, S. Wu, and J. A. Szpunar, “Self-assembled palladium nanowires by electroless deposition, Institute of Phys. Pub. Nanotech., vol. 17, pp. 2161-2166, 2006.
[131] J. Shu, B. P. A. Grandjean, E. Ghali, and S. Kaliaguine, “ Autocatalytic effects in electroless deposition of palladium, J. Electronchem Soc., vol. 140, pp. 3175-3180, 1993.
[132]T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, “Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating technique, Inter. J. Hydrogen Energy, vol. 28, pp. 297-302, 2003.
[133]Y. I. Chou, “Studies on fabrication, characterization and sensing of Pd/InP Schottky diode based hydrogen sensors, doctor thesis, National Cheng-Kung University, Tainan, Taiwan, 2005.
[134] H. W. Pan, “Study on fabrication and hydrogen detection of Pd/Al¬0.3Ga0.7As and Pd/GaN Schottky diodes by electroless plating, master thesis, National Cheng-Kung University, Tainan, Taiwan, 2005.
[135] G. O. Mallory, J. B. Hajdu, eds., Electroless Plating, American Electroplaters and Surface Finishers Society, Inc. and Noyes Publications, New York, 1990.
[136] C. C. Huang, H. I. Chen, S. Y. Cheng, L. Y. Chen, T. H. Tsai, Y. C. Liu, T. Y. Chen, C. H. Hsu, and W. C. Liu, “On the characteristics of an elec-troless plated (EP)-based pseudomorphic high electron mobility transis-tor (PHEMT), Solid State Electron., vol. 61, no. 1, pp. 13-17, 2011.
[137] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “Comprehensive study of Pd GaN metal-semiconductor-metal hydrogen sensors with symmetrically bi-directional sensing performance, Sens. Actuator B-Chen., vol. 138, pp. 422-427, 2009.
[138] T. H. Tsai, H. I. Chen, I. P. Liu, C. W. Hung, T. P. Chen, L. Y. Chen, et al., “Investigation on a Pd–AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses, IEEE Trans. Electron Dev., vol. 55, pp. 3575-3581, 2008.
[139]T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chang, C. W. Hung, et al., “SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode, Sens. Actuators B: Chemical, vol. 136, pp. 338-343, 2009.
[140]C. C. Chou, H. I. Chen, I. P. Liu, C. C. Chen, J. K. Liou, C. J. Lai, W. C. Liu, “Hydrogen sensing characteristics of Pd/SiO2-nanoparticles(NPs)/AlGaN metal-oxide-semiconductor (MOS) diodes , Int. J. Hydrogen Energy ., vol. 39, pp. 20313-20318, 2014.
[141]T. J. Anderson, H. T. Wang, B. S. Kang, F. Ren, S. J. Pearton, A. Osinsky, A. Dabiran, P. P. Chow, “Effect of bias voltage polarity on hydrogen sensing with AlGaN/GaN Schottky diodes, Appl. Surf. Sci., vol. 255, pp. 2524-2526, 2008.
[142]X. H. Wang, X. L. Wang, C. Feng, H. L. Xiao, C. B. Yang, J. X. Wang, B. Z. Wang, J. X. Ran, C. M. Wang, “Hydrogen sensors based on AlGaN/AIN/GaN Schottky diodes, Chin. Phys. Lett., vol. 25, pp. 266–269, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔