跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭哲綸
研究生(外文):Kuo, Che-Lun
論文名稱:電動車無線電能傳輸系統之線圈自動定位研究
論文名稱(外文):A Study On The Automatic Coils Alignment of Wireless Power Transfer System for Electric Vehicle
指導教授:戴政祺
指導教授(外文):Tai, Cheng-Chi
口試委員:黃世杰林志隆廖斌毅李宗勳
口試委員(外文):Shyh-Jier HuangChih-Lung LinBin-Yih LiaoTsong-Shing Lee
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:電動車無線電能傳輸線圈設計自動定位
外文關鍵詞:electric vehiclewireless power transmissioncoil designautomatic positioning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一套電動車無線電能傳輸之線圈自動定位技術。有鑑於在非接觸電能傳輸系統中,當初級側線圈與次級側線圈發生偏移時,系統傳能效率便下降。因此,本文藉由加入兩組感測器線圈,利用感測器線圈上所感應到的電壓會依初級側傳輸線圈位置不同而有所差異,作為判斷初級側傳輸線圈位置與調整平台之依據,使系統效率提升。而於非接觸式感應耦合線圈是藉由有限元素法軟體所設計,經模擬驗證後,線圈之間皆有良好耦合度。藉由分析系統電路架構之等效模型,推導出數學公式,提出自動定位之回授機制,且參照SAE J2954 感應充電規範建議標準下,在頻率81.38 kHz ~ 90 kHz之間設計最佳補償電容,以提升系統效率。由實驗結果顯示,當初級側傳輸線圈與次級側感應線圈偏移10公分時,系統傳能效率調至約70%,經由自動定位回授機制後,可有效使傳輸線圈拉回偏移2公分內,系統效率也提升至90%,因此本文所研製之自動定位之無線電能傳輸系統具有潛力及實用性。
The coil automatic positioning of wireless power transmission for electric vehicles is proposed in this study. When the primary coil and the secondary coil appear misalignment in a contactless power transmission system, the power transmission efficiency would be reduced. Two sensor coils are therefore included in this study. The voltage induced on the sensor coil would change with the position of primary coil that it is used as the reference to judge the position of the primary coil and the adjustment platform to enhance the system efficiency. The contactless inductive coupling coil is designed with Finite Element Method, and the simulation proves the favorable degree of coupling appears between coils. The automatic positioning feedback mechanism is proposed by analyzing the equivalent model of the circuit structure of the system to deduct the mathematical equation. Referring to the inductive charging standard suggested in SAE J2954, the optimal compensating capacitor is designed within the frequency 81.38 kHz ~ 90 kHz to promote the system efficiency. The experimental results reveal that the power transmission efficiency of the system is adjusted about 70% when the misalignment of primary-side transmission coil and the secondary-side inductive coil is 10 cm. The automatic positioning feedback mechanism could effectively adjust the misalignment of the transmission coil back to 2 cm, and the system efficiency is promoted up to 90%. The automatic positioning wireless power transmission system developed in this study therefore present the potential and practicability.
摘 要 I
EXTENDED ABSTRACT II
誌謝 IX
目錄 X
圖目錄 XIII
表目錄 XVI
第一章 緒論 1
1-1 研究背景 1
1-2 國內外文獻回顧 2
1-3 研究動機與目的 2
1-4 論文架構 4
第二章 非接觸式電能傳輸原理與換流器諧振電路分析 5
2-1簡介 5
2-2非接觸式電能傳輸基本原理 5
2-3非接觸式變壓器之等效模型與補償架構介紹 7
2-2-1 補償架構介紹 8
2-2-2 串聯-串聯補償架構之諧振特性分析 9
2-4線圈漏感量測與計算耦合係數 12
2-5 全橋換流器介紹及操作原理 14
第三章 系統硬體電路架構與線圈設計 16
3-1前言 16
3-2系統架構說明 16
3-3 數位訊號處理器與周邊界面及硬體電路介紹 18
3-3-1 全橋換流器及功率開關驅動電路 18
3-3-2電壓電流檢測擷取電路 20
3-4 感應線圈之結構設計模擬分析 23
3-4-1 接收端線圈磁場模擬分析 24
3-4-2 感測器線圈磁場模擬分析 30
3-4-3 線圈實測 34
3-5自動定位充電系統之分析與驗證 37
3-5-1自動定位傳輸平台架構等效電路模型分析 37
3-5-2 諧振補償架構之電路分析 39
3-5-3 補償電容分析 44
3-6自動定位回授機制介紹 46
3-6-1 自動定位調控機制 47
第四章 系統模擬與實驗結果 49
4-1簡介 49
4-2系統規格與硬體電路介紹 49
4-3動態無線傳能系統之電路模擬 52
4-4系統波形量測及分析 57
4-4-1 系統整體電路特性分析 57
4-4-2電動車無線電能傳輸之線圈自動定位系統錯位實驗 63
4-5實驗結果與討論 64
第五章 結論與未來展望 66
5-1結論 66
5-2未來研究方向 67
參考文獻 68
自述 72
[1]J. M. Miller, O. C. Onar, and M. Chinthavali, “Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.3, No. 1, pp. 147-162, Mar. 2015.
[2]J. M. Miller, and A. Daga, “Elements of Wireless Power Transfer Essential to High Power Charging of Heavy Duty Vehicles,” IEEE Transactions on Transportation Electrification, Vol. 1, No. 1, pp. 26-39, Jun. 2015.
[3]J. Gozalvez, “First Wireless Electric Vehicle Charging Trial,” IEEE Vehicular Technology Magazine, pp. 10-17, Jun. 2012.
[4]F. Musavi, and W. Eberle, “Overview of Wireless Power Transfer tTechnologies for Electric Vehicle Battery Charging,” IET Power Electron, Vol. 7, Iss. 1, pp. 60–66, 2014.
[5]M. Kim, H. Kim, D. Kim, Y. Jeong, H.H. Park, and S. Ahn, “A Three-Phase Wireless-Power-Transfer System for Online Electric Vehicles With Reduction of Leakage Magnetic Fields,” IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 11, pp. 3806-3813, Nov. 2015.
[6]S. Y. R. Hui, and Wing. W. C. Ho, “A New Generation of Universal Contactless Battery Charging Platform for Portable Consumer Electronic Equipment,” IEEE Transactions on Power Electronics, Vol. 20, No. 3, pp. 620-627, May. 2005.
[7]E. Waffenschmidt, “Wireless Power for Mobile Devices,” IEEE Telecommunications Energy Conference, Amsterdam, Netherlands, pp. 1-9, Oct. 2011.
[8]T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, Z. Wang, and Z. Wang, “An Asymmetric Resonant Coupling Wireless Power Transmission Link for Micro-Ball Endoscopy,” Engineering in Medicine and Biology Society, Buenos Aires, Argentina, pp. 6531-6534, 2010.
[9]Jeff P. W. Chow, N Chen, Henry S. H. Chung, and Leanne L. H. Chan, “Misalignment Tolerable Coil Structure for Biomedical Applications with Wireless Power Transfer,” IEEE Engineering in Medicine and Biology Society, Osaka, Japan, pp. 775-778, Jul. 2013.
[10]T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “A Two-Hop Wireless Power Transfer System With an Efficiency-Enhanced Power Receiver for Motion-Free Capsule Endoscopy Inspection,” IEEE Transactions on Biomedical Engineering, Vol 59, No. 11, pp. 3247-3254, Nov. 2012.
[11]G. Ma, and G. Jiang, “Review of Tumor Hyperthermia Technique in Biomedical Engineering Frontier,” Biomedical Engineering and Informatics, Yantai, China, pp. 1357-1359, Nov. 2010.
[12]Y. Huang, N. Shinohara, and T. Mitani, “Impedance Matching in Wireless Power Transfer,” IEEE Transactions on Microwave Theory and Techniques , Vol 65, No. 2, pp. 582-590, Feb. 2017.
[13]W. Zhou, and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” IEEE Conf. Appl. Power Electron, USA, pp. 985-990, Feb. 2007.
[14]O. H. Stielau, and G. A. Covic, “Design of Loosely Coupled Inductive Power Transfer Systems,” IEEE International Conference on Power System Technology, Perth, Australia, Vol. 1, pp. 85-90, Dec. 2000.
[15]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer System,” IEEE Trans. Ind. Electron, vol. 51, no. 1, pp. 148–157, Feb. 2004.
[16]Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1801-1812, May. 2009.
[17]W. Zhang, and C. C. Mi, “Compensation Topologies of High-Power Wireless Power Transfer Systems,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, pp. 4768-4778, Jun. 2016.
[18]“SAE Electric Vehicle Inductive Charge Coupling Recommended Practice,” SAE J-1773, Society of Automotive Engineers, Draft Document, 1995-01.
[19]J. Schneider, “SAE TIR J2954Wireless Charging of Electric and Plug-in Hybrid Vehicles,” SAE International.
[20]J. Schneider, “SAE J2954 Overview and Path Forward,” SAE International.
[21]J. Sallan, J.L. Villa, A. Llombart, and J.F. Sanz, “Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2140-2149, Jun. 2009.
[22]J.L. Villa, A. Llombart, J.F. Sanz, and J. Sallan, “Practical Development of a 5 kW ICPT System SS Compensated with a Large Air gap,” IEEE International Symposium on Industrial Electronics, Vigo, Spain, pp. 1219-1223, Jun. 2007.
[23]J. L. Villa, J. Sallan, J. F. S. Osorio, and A. Llombart, “High-Misalignment Tolerant Compensation Topology for ICPT Systems,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, pp. 945-951, Feb. 2012.
[24]C. T. Rim, J. Huh, S. W. Lee, W. Y. Lee, and G. H. Cho, “Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles,” IEEE Transactions on Power Electronics, Vol. 26, No. 12, pp. 3666-3679, Dec. 2011.
[25]J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, “Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, pp. 1179-1192, Mar. 2014.
[26]S. Moon, B. C. Kim, S. Y. Cho, and C. H. Ahn, “Analysis and Design of a Wireless Power Transfer System With an Intermediate Coil for High Efficiency,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, pp. 5861-5870, Nov. 2014.
[27]S. Y. Cho, I. O. Lee, S. C. Moon, G. W. Moon, B. C. Ki, and K. Y. Kim, “Series-Series Compensated Wireless Power Transfer at Two Different Resonant Frequencies,” IEEE ECCE Asia Downunder, Melbourne, Australia, pp. 1052-1058, Jun. 2013.
[28]I. S. Suh, and J. Kim, “Electric Vehicle On-Road Dynamic Charging System with Wireless Power Transfer Technology,” IEEE International Electric Machines & Drives Conference, Chicago, United States of America, pp. 234-240, May. 2013.
[29]S. Lee, J. Huh, C. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-Line Electric Vehicle Using Inductive Power Transfer System,” IEEE Energy Conversion Congress and Exposition, Atlanta, United States of America, pp. 1598-1601, Sep. 2010.
[30]I. S. Suh, K. Lee, and M. Lee, “Dynamic Model and Control Algorithm of HVAC System for Dynamic Wireless Charging EV Application,” IEEE International Electric Machines & Drives Conference, Chicago, United States of America, pp. 241-246, May. 2013.
[31]M. Fu, T. Zhang, X. Zhu, P. C. K. Luk, and C. Ma, “Compensation of Cross Coupling in Multiple-Receiver Wireless Power Transfer Systems,” IEEE Transactions on Industrial Informatics, Vol. 12, Issue. 2, pp. 474-482, Apr. 2016.
[32]M. Fu, H. Yin, and C. Ma, “Megahertz Multiple-Receiver Wireless Power Transfer Systems With Power Flow Management and Maximum Efficiency Point Tracking,” IEEE Transactions on Microwave Theory and Techniques, Issue. 99, pp. 1-9, Apr. 2017.
[33]M. L. G. Kissin, G. A. Covic, and J. T. Boys, ‘‘Steady-State Flat Pickup Loading Effects in Poly-Phase Inductive Power Transfer Systems,’’ IEEE Trans. Ind. Electron, vol. 58, no. 6, pp. 2274–2282, May. 2011.
[34]Daniel Fleisch, “A Student's Guide to Maxwell's Equations,” Cambridge University Press, 2008.
[35]E. M. Purcell, and D. J. Morin, “Electricity and Magnetism,” Cambridge University Press, 2013.
[36]S. Sharif, and K. Sharif, “Influence of skin effect on torque of cylindrical eddy current brake,” International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, pp. 535-539, Mar. 2009.
[37]TMS320F28335 Datasheet, Texas Instruments Technology Inc, 2009. [Online] Available: http://www.farnell.com/datasheets/1719426.pdf.
[38]CD40106B Datasheet, Texas Instruments Technology Inc, 2003. [Online] Available: http://www.ti.com/lit/ds/symlink/cd40106b-mil.pdf.
[39]IR2110 Datasheet, Infineon Technology Inc, 2003. [Online] Available: http://www.infineon.com/dgdl/ir2110.pdf?fileId=5546d462533600a4015355c80333167e.
[40]LA 55-P Datasheet, LEM USA Inc, 2008. [Online] Available: http://www.lem.com/docs/products/la%2055-p%20e.pdf.
[41]V. Jiwariyavej, T. Imura, and Y. Hori, “Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling Using Information From Either Side of the System,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, Mar. 2015.
[42]劉子溢,「電動車寬頻帶與高效率無線電能傳輸系統研製」,國立成功大學電機工程學系碩士論文,2015。
[43]謝京翰,「基於PID控制器與切換機制之動態無線傳能系統研究」,國立成功大學電機工程學系碩士論文,2016。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top