(54.236.62.49) 您好!臺灣時間:2021/03/08 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱仕堡
研究生(外文):Shih-BaoCiou
論文名稱:以分子動力學分析二/三元鎳鋁基奈米板受到拉伸應力之機械性質
論文名稱(外文):A Study on Mechanical Behaviors of binary/ternary NiAl-based nanoplates under Tensile Stress by Molecular Dynamics Simulation
指導教授:陳鐵城
指導教授(外文):Tei-Chen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:鎳鋁基二元三元奈米板分子動力學奈米板拉伸缺陷
外文關鍵詞:Binary/ternaryNiAl-based nanoplatesMolecular dynamicsDefect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究重點在於探討鎳鋁基二元、三元奈米板在微奈米尺度下的機械以及材料性質。在模擬理論方法上,使用分子動力學法與EAM勢能函數作為理論基礎,並配合開放式軟體LAMMPS做為工具,首先分析奈米板在淬火後的晶體結構差異,接著比較鎳基二元、三元奈米板受單軸拉伸情形,並且分析材料的滑移系統、強度、應力分佈以及奈米板在拉伸的斷裂過程。此外,為了讓模擬的結果更貼近製程及實驗,在奈米板左側邊緣抽取一定比例的原子數,使其產生缺陷,進而探討缺陷對機械性質的影響。其結果顯示隨著冷卻速率的降低,各種奈米板的非晶態結構比例會越低。在拉伸過程中,隨著鈦原子比例的上升,奈米板在各種不同冷卻速率下的非晶態比例會上升,延性也會提升。由於應力應變曲線取決於奈米板本身的晶體結構,因此有無裂縫奈米板的楊氏模數及極限應力的數值並沒有很大的差異。而奈米板缺陷的影響中,初始裂縫對於奈米板機械性質影響並不大,但裂縫影響了奈米板左右的對稱性以及剪應變,使左右兩端斷裂方式不同。隨著裂縫的增長,左右兩側斷裂方式更加不同,奈米板剪應變較初始裂縫奈米板更加集中在裂縫尖端周圍。隨著裂縫的增寬,同樣影響了奈米板在左右側端斷裂趨勢,但剪應變集中的現象較增長裂縫不明顯。
This study investigated the effects of quenching rate on the mechanical properties and deformation mechanism of binary/ternary NiAl-based nanoplate under uniaxial tensile stress. Molecular dynamics simulations were carried out using the program package LAMMPS with Embedded-Atom Method. The influence of defects, by inserting an edge crack on the left side of the model, was also evaluated and discussed. Simulation results show that the amount of amorphous phase of nanoplate is decreased with the decrease of quenching rate. With the increase of Ti, a substantial improvement in ductility can be achieved due to the increase of amorphous phase. The values of Young’s modulus and ultimate stress of nanoplate with cracks are similar to that without cracks, because the stress-strain curves are mostly influenced by the crystal structure of nanoplates. Although the influence of initial cracks on the mechanical properties is not significant, they change the symmetry and the shear strain of nanoplates. As the length of crack becomes longer, the largest shear strain tend to more concentrate on the edge of cracks. Besides, they change the mode of the crack damage. For wider cracks, the largest shear strain also more concentrate on the edge of cracks, but the phenomenon is not so obvious compared to the case with longer cracks.
摘要....................................III
Abstract................................IV
目錄.....................................XIV
表目錄...................................XVI
圖目錄...................................XVIII
第一章 緒論.............................1
1-1 前言............................................1
1-2 文獻回顧........................................3
1-2-1 金屬玻璃之文獻回顧...............................3
1-2-2 鎳基二元及三元合金之文獻回顧......................4
1-3 研究動機與目的...................................6
1-4 研究貢獻.........................................7
1-5 本文架構.........................................8
第二章 分子動力學基本原理...............................9
2-1 分子動力學基本假設...............................9
2-2 分子間作用力與勢能函數...........................10
2-2-1 分子間作用力....................................10
2-2-2 勢能函數........................................11
2-3 系統之初始速度..................................17
2-4 系統溫度修正....................................18
2-5 截斷半徑與鄰近表列法.............................20
2-6 週期邊界條件與最小映像法則.......................24
2-7 預測修正法......................................26
2-8 無因次化........................................29
2-9 原子級應力......................................30
第三章 理論分析及模型架構..............................32
3-1 初始物理模型....................................32
3-2 勢能函數之選擇..................................40
3-3 近鄰分析(CNA)...................................41
3-4 徑向分布函數(RDF)...............................42
3-5 模擬流程........................................43
第四章 結果分析與討論..................................45
4-1 奈米板模型淬火..................................45
4-1-1 不同冷卻速率之影響..............................45
4-1-2 不同合金組成比例之影響...........................48
4-1-3 徑向分布函數與冷卻速率的關係.....................49
4-2 鎳基二、三元奈米板拉伸...........................51
4-2-1 不同冷卻速率對機械性質之影響.....................51
4-2-2 不同合金組成對機械性質之影響.....................56
4-3 裂縫形狀對奈米板變形與破壞機制....................61
4-3-1 初始裂縫(28.9Åx34.68Åx14.5Å)對機械性質之影響.......61
4-3-2 裂縫(57.8Åx34.68Åx14.45Å)對機械性質之影響........66
4-3-3 裂縫(28.9Åx34.68Åx28.9Å)對機械性質之影響.........71
4-3-4 不同條件下之原子位移向量.........................76
第五章 結論與未來展望..................................80
4-1 結論...........................................80
4-2 未來展望與建議..................................82
參考文獻................................................83
[1]J. C. Huang, J. P. Chu, and J. S. C. Jang, 'Recent Progress in Metallic Glasses in Taiwan', Intermetallics, 17 (2009), 973-87.
[2] A. S. Argon, 'Plastic-Deformation in Metallic Glasses', Acta Metallurgica, 27 (1979), 47-58.
[3] Frans Spaepen, 'A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses', Acta Metallurgica, 25 (1977), 407-15.
[4]W. Klement, R. H. Willens, and P. Duwez, 'Non-Crystalline Structure in Solidified Gold-Silicon Alloys', Nature, 187 (1960), 869-70.
[5]H. S. Chen, and D. Turnbull, 'Formation, Stability and Structure of Palladium-Silicon Based Alloy Glasses', Acta Metallurgica, 17 (1969), 1021-&.
[6]A. Inoue, T. Zhang, and T. Masumoto, 'Al-La-Ni Amorphous-Alloys with a Wide Supercooled Liquid Region', Materials Transactions Jim, 30 (1989), 965-72.
[7]A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, 'Mg-Cu-Y Amorphous-Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method', Materials Transactions Jim, 32 (1991), 609-16.
[8]A. Peker, and W. L. Johnson, 'A Highly Processable Metallic-Glass - Zr41.2ti13.8cu12.5ni10.0be22.5', Applied Physics Letters, 63 (1993), 2342-44.
[9]A. V. Ponomareva, E. I. Isaev, Y. K. Vekilov, and I. A. Abrikosov, 'Site Preference and Effect of Alloying on Elastic Properties of Ternary B2 Nial-Based Alloys', Physical Review B, 85 (2012), 10.
[10]E. Y. Liu, J. H. Jia, Y. P. Bai, W. Z. Wang, and Y. M. Gao, 'Study on Preparation and Mechanical Property of Nanocrystalline Nial Intermetallic', Materials & Design, 53 (2014), 596-601.
[11]P. H. Sung, and T. C. Chen, 'Effects of Quenching Rate on Crack Propagation in Nial Alloy Using Molecular Dynamics', Computational Materials Science, 114 (2016), 13-17.
[12]K. P. Sidnov, D. S. Belov, A. V. Ponomareva, I. A. Abrikosov, A. M. Zharmukhambetova, N. V. Skripnyak, S. A. Barannikova, A. S. Rogachev, S. Rouvimov, and A. S. Mukasyan, 'Effect of Alloying on Elastic Properties of Ternary Ni-Al-Ti System: Experimental Validation', Journal of Alloys and Compounds, 688 (2016), 534-41.
[13]L. A. Girifalco, and V. G. Weizer, 'Application of the Morse Potential Function to Cubic Metals', Physical Review, 114 (1959), 687-90.
[14]J. E. Jones, 'On the Determinations of Molecular Fields - 1 from the Variation of the Viscosity of a Gas with Temperature', Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 106 (1924), 441-62.
[15]J. E. Jones, 'On the Determination of Molecular Fields - Ii from the Equation of State of a Gas', Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 106 (1924), 463-77.
[16]J. E. Jones, 'On the Determination of Molecular Fields Iii - from Crystal Measurements and Kinetic Theory Data', Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 106 (1924), 709-18.
[17]M. S. Daw, S. M. Foiles, and M. I. Baskes, 'The Embedded-Atom Method - a Review of Theory and Applications', Materials Science Reports, 9 (1993), 251-310.
[18]H. Ishida, S. Motoyama, K. Mae, and Y. Hiwatari, 'Molecular Dynamics Simulation of Martensitic Transformations in Nial Alloy Using the Modified Embedded Atom Method', Journal of the Physical Society of Japan, 72 (2003), 2539-45.
[19]C. H. Zhang, S. Huang, J. Shen, and N. X. Chen, 'Chen's Lattice Inversion Embedded-Atom Method for Ni-Al Alloy', Chinese Physics B, 21 (2012), 7.
[20]F. Cleri, and V. Rosato, 'Tight-Binding Potentials for Transition-Metals and Alloys', Physical Review B, 48 (1993), 22-33.
[21]J. Tersoff, 'New Empirical-Approach for the Structure and Energy of Covalent Systems', Physical Review B, 37 (1988), 6991-7000.
[22]J. Tersoff, Modeling Solid-State Chemistry - Interatomic Potentials for Multicomponent Systems, Physical Review B, vol. 39, pp. 5566-5568, Mar 15 1989.
[23] J. D. Honeycutt, and H. C. Andersen, 'Molecular-Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters', Journal of Physical Chemistry, 91 (1987), 4950-63.
[24]L. L. Lee, and J. M. Haile, 'Group Contribution Methods for Molecular Mixtures .1. Interaction Site Models', Fluid Phase Equilibria, 43 (1988), 231-61.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔