|
1 Anderson, John D., “Fundamentals of Aerodynamics, Third edition, New York: McGraw-Hill, 2001. 2 Anderson, John D., “Hypersonic and High-Temperature Gas Dynamics, Second edition, AIAA, 2006. 3 A. J. Hodges, “The drag coefficient of bery high velocity spheres, Journal of the Aeronautical Sciences, Vol. 24, No. 10 , pp. 755-758, 1957. 4 Berger, Marsha J., Joseph Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations, Journal of computational Phys. 53.3, pp. 484-512, 1984. 5 Berger, Marsha J., Phillip Colella, “Local adaptive mesh refinement for shock hydrodynamics, Journal of computational Phys. 82.1, pp. 64-84, 1989. 6 Berger, Marsha J., Automatic Adaptive Grid Refinement for the Euler Equations, AIAA Journal Vol. 23, No. 4, 1985. 7 Eleuterio F. Toro, “Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 2009. 8 Flynn, Michael J., “Very high-speed computing systems, Proceedings of the IEEE, pp. 1901-1909, 1966. 9 George E. Hansche. Air Drag on Cubes at Mach Numbers 0.5 to 3.5, Journal of the Aeronautical Sciences, Vol. 19, No. 2, pp. 83-84, 1952. 10 Godunov, S. K., A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations, Math. Sbornik, 47, pp.271–306, 1959 11 M. Elena Va ́zquez-Cendo ́n, “Solving hyperbolic Equations with Finite Volume Methods, Springer, 2008. 12 Nividia, “CUDA Complier Driver NVCC, Reference Guide, NVIDIA Corporation, 2014 13 Harten A., “High-resolution schemes for hyperbolic conservation laws, J. Comput. Phys., Vol. 49, pp. 357-393, 1983. 14 Hirschel, E.H., “Basics of Aerothermodynamics, 2005. 15 John Argyris, Ioannis St. DOLTSINIS and Heinz FRIZ, “Studies on Computational Re-entry Aerodynamics, Computer methods in applied mechanics and engineering 81, pp. 257-289, 1990. 16 Kuo. F.-A., Smith M.R., “GPU acceleration for general conservation equations and its application to several engineering problems, Computers & Fluids, pp. 147-154, 2011. 17 Liu J.-Y., “Hybrid OpenMP/AVX Acceleration of Split Harten, Lax and Van Leer Method for the EulerEquations, 2014. 18 Liu J.-Y., Smith M.R., Kuo F.-A., Wu J.-S., “Hybrid OpenMP/AVX acceleration of a Split HLL Finite Volume Method for the Shallow Water and Euler Equations, Computers&Fluids, Vol. 110, pp. 181-188, 2015. 19 Liou M.-S., Steffen Jr. C.J., “A new flux splitting scheme, J. Comput. Phys., Vol.107, pp.23-39.1993. 20 M. Ghill and S. Childress. “Topics in geophysical fluid dynamics : atmospheric dynamics, dynamo theory, and climate dynamics, vol. 60 of Applied mathematical sciences, 1987. 21 Mcbride B. J., Gordon S., “Computer program for calculating and fitting thermodynamic functions, 1992. 22 Murman. S.M., “Lift and Drag Behavior of Unconstrained Bluff Bodies, NASA Technical Memorandum TM-2010-216406, 2010. 23 Murman. S.M., Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods, 43rd AIAA Aerodpace Sciences Meeting, 2005. 24 P. D. Lax and B. Wendroff, “Systems of conservation laws, Comm, Pure Appl. Math., pp. 217-237, 1960. 25 Plewa T., Linde T., Weirs V. G., “Adaptive Mesh Refinement – Theory and Applications, Springer, 2003. 26 R. F. Warmingand R. M. Beam, “Upwind second order difference schemes and applications in aerodynamics, AIAA, pp. 1241-1249, 1976. 27 R. T. Carter, P. S. Jandir, M. E. Kress, “Constraining the Drag Coefficients of Meteors in Dark Flight, Meteoroids: The Smallest Solar System Bodies; 243-250; (NASA/CP-2011-216469), 2011. 28 Randall J. LeVeque, “Finite Volume Methods for Hyperbolic Problems, Cambridge university press, 2002. 29 Roe P.L., A Brief Introduction to high resolution schemes, in “Upwind and High Resolution Schemes, edited by Hussaini, M.Y., Van Leer, B. and Van Leer, Rosendale, J.:9-28,1997. 30 Roe P.L., “Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech., Vol. 18, pp. 337-365, 1986. 31 Roth. S. D., “Ray Casting for Modeling Solids, Computer Graphics and Image Processing, Vol. 18, Issue 2, pp. 109-144, 1982. 32 Sighard F. Honerner, “Fluid- dynamic drag, Hoerner fluid dynamic, 1965. 33 Smith M.R., “Introduction to Multi-Core CPU and GPU Computation, 2014. 34 Sod G. A., “A survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, J. Comput. Phys., Vol. 27, pp. 1-31, 1978. 35 Sweby P.K., “High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., Vol. 21, pp. 995-1011, 1984. 36 T. Kikuchi, D. Numata, K. Takayama, M. Sun, “Shock stand-off distance over spheres flying at transonic speed ranges in air, 2009. 37 Van Leer B., “Towards the ultimate conservative difference scheme, II: Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., Vol. 14, pp. 361-370, 1974. 38 Van Leer B., “Towards the ultimate conservative difference scheme, III: Upstream-centered finite-difference schemes for ideal compressible flow, J. Comput. Phys., Vol. 23, pp. 263-275, 1977. 39 Van Leer B., Flux-Vector Splitting for the Euler Equation, Lecture Notes in Physics, Vol. 170, p.507, 1982.
|