(3.237.234.213) 您好!臺灣時間:2021/03/09 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾秀華
研究生(外文):Hsiu-HuaTseng
論文名稱:利用一個生成元的偽循環碼探討(n,1,ν)卷積碼
論文名稱(外文):Explore (n,1,ν) Convolutional Codes by 1-Generator Quasi-cyclic Codes
指導教授:柯文峰
指導教授(外文):Wen-Fong Ke
學位類別:碩士
校院名稱:國立成功大學
系所名稱:數學系應用數學碩博士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:42
中文關鍵詞:卷積碼里德-所羅門碼最小自由距離
外文關鍵詞:convolutional codesReed-Solomon codesminimum free distance.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用準循環碼 (quasi-cyclic codes)和卷積碼 (convolutional codes)能具有相同最小(自由)距離,與里德-所羅門碼 (Reed-Solomon codes)可以設計最小距離的特性,構造出不易發生解碼錯誤的卷積碼 (convolutional codes)。
According to that quasi-cyclic codes and convolutional codes can have the same minimum (free) distance, and that Reed-Solomon codes can be designed minimum distance, we can construct convolutional codes with lower error probability of decoding.
Contents
1 Introduction 3
1.1 Background of coding theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The difference codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research motives and purposes . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Background 4
2.1 Convolutional codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Viterbi decoding algorithm . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Decoding error probability on a binary symmetric channel (BSC). . 15
2.2 Block codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1.1 BCH codes . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1.2 Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Quasi-cyclic codes (QC codes) . . . . . . . . . . . . . . . . . . . . . 21
3 A link between convolutional codes and quasi-cyclic codes 24
4 Construct 1-generator quasi-cyclic codes 26
5 A lower bound of the minimum distances of quasi-cyclic codes which are
associated with Reed-Solomon codes 37
6 Conclusion 39
7 Appendix 41
7.1 GAP : find wight enumerations of quasi-cyclic codes . . . . . . . . . . . . . 41
7.1.1 Generator polynomial ˜ g(x) = (x 14 + x 13 + x 11 + x 7 + 1,0,0). . . . . 41
7.1.2 Generator polynomial ˜ g(x) = (x 14 +x 13 +x 12 +x 11 +x 10 +x 8 +x 6 +x 5 +
x 4 +x 2 ,x 13 +x 12 +x 10 +x 4 +x 3 +x+1,x 13 +x 12 +x 10 +x 5 +x 4 +x 3 +x 2 ). 41
7.2 The cyclotomic cosets modulo 7, 73 and 273 . . . . . . . . . . . . . . . . . 42
[1] R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group
Codes, Inform. Control, 3: 68-79, March 1960.
[2] P. Elias, “Coding for Noisy Channels, IRS Conv. Rec., p.4:37-47,1955.
[3] M. Esmaeli, T.A. Gulliver, N. P. Secord, and S. A. Mahmoud, “A link betwwen
quasi-cyclic codes and convolutional codes, IEEE Trans. Inform. Theory, vol. 44,
pp.431-435, Jan. 1998.
[4] R. W. Hamming, “Error Detecting and Error Correcting Codes, Bell Syst. Tech. J.,
29: 147-60, April 1950.
[5] A. Hocquenghem, “Codes corecteurs d’erreurs, Chiffres, 2: 147-56, 1959.
[6] R. Johannesson and K.S. Zigangirov, Fundamental of convolutional coding, IEEE
Press, Piscataway, NJ, 1999.
[7] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applicati-
ons, Cambridge University Press, 1994.
[8] K. Lally and P. Fitzpatrick, “Algebraic structure of quasi-cyclic codes, Discr. Appl.
Math., vol. 111, p.157-175, 2001.
[9] S. Ling and P. Sole’, On the algebraic structure of quasi-cyclic codes I: finite fields,
IEEE Trans. Inform. Thery, vol.47, pp.2751-2760, Nov. 2001.
[10] Shu Lin, Daniel J. Costello, Jr., Error Control Coding: Fundamental and Application.
Pearson, 2004.
[11] J. L. Messey, Threshold Decoding. MIT Press, Cambridge, 1963.
[12] J. L. Massey and M. K. Sain, “Inverses of linear sequential circuits, IEEE Trans.
Comput., C-17:330-337, 1968.
[13] F. J. MacWilliams and N. J. A Sloane, The Theory Of Error Correcting Codes,
North-Holland Mathematical Library; 16, 1996.
[14] E. Prange, “Cyclic Error-Correcting Codes in Two Symols, AFCRC-TN-57, 103, Air
Force Camridge Research Center, Cambridge, Mass., September 1957.
[15] I. S. Reed and G. Solomon, “Polynomial codes over Certain Finit Fields. J. Soc. Ind.
Appl. Math., 8:300-304, June 1960.
[16] C. E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J.,
pp.379-423(Part1), July 1948.
[17] Ge’rald E. Se’guin, “A class of 1-generator quasi-cyclic codes, IEEE Trans. Inform.
Theory, vol. 50, No.8, Aug. 2004.
[18] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Opti-
mum Decoding Algorithm, IEEE Tran. Inform. Theory, IT-13:260-69, April 1967.
[19] A. J. Viterbi,Convolutional codes and their performance in a communication sys-
tems, IEEE Trans. Commun. Technol., COM-19:751-772, 1971.
[20] J. M. Wozencraft and B. Reiffen, Sequential Decoding, MIT Press, Cambridge,1961.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔