Abanades, J.C., Alvarez, D., 2003.Conversion limits in the reaction of CO2 with lime. Energy & Fuels, 17(2), 308-315,
Abanades, J. C., 2004. Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE Journal 50(7),1614-1622.
Alonso, M., 2011. Capture of CO2 during low temperature biomass combustion in a fluidized bed using CaO. Process description, experimental results and economics.Energy Procedia 4, 795-802.
Barbosa, R. C., 2016. The Use of a High Limestone Content Mining Waste as a Sorbent for CO2 Capture. Brazilian Journal of Chemical Engineering 33(3),599-606.
Babu, P., 2015. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85, 261-279.
Banaszkiewicz,T., 2014.Comparative Analysis of Oxygen Production for Oxy-combustion Application. Energy Procedia 51, 127-134.
Bachu, S., Simbeck, D., Thambimuthu, K., 2012. Properties of CO2 and carbon-based fuels. IPCC, 385-398.
Carlos Herce, A. C., Stefano Stendardo , 2010. Numerical simulation of a high temperature CO2 capture fluidized bed. Processes and Technologies for a Sustainable Energy, 27-30.
Chang, E. E., 2012. CO2 Capture by Using Blended Hydraulic Slag Cement via a Slurry Reactor. Aerosol and Air Quality Research.
Chang,E.E., 2012. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227-228, 97-106.
Chen, L., 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science 38(2), 156-214.
Chi, C.C. and Lin, TH., 2013. Oxy-oil combustion characteristics of an existing furnace.Applied Energy 102, 923-930.
Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction. AICHE Journal 45.
Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis I., Galiotis C., 2008. Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840.
Diego, L. F. de, Rufas, A., García-Labiano, F., Obras-Loscertales, M. de las, Abad, A., Gayán, P., Adánez, J., 2013.Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions, Fuel, vol. 114, pp. 106-113.
Elsevier Ltd, 2015. Climate Record: Surface Temperature Trends. Encyclopedia of Atmospheric Sciences , 2nd edition.
Eloneva, S., 2010. Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 – legislative issues. Journal of Cleaner Production 18(18), 1833-1839.
Eloneva, S., 2008. Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9), 1461-1467.
Environmental Protection Administration, Executive Yuan, R.O.C, 2016
Smirniotis, E. P., 2004. High-Temperature Sorbents for CO2 Made of Alhali Metals Doped on CaO Supports, Physical Chemistry, 108(23), 7794-7800.
Fennell, P., Dennis, J., Hayhurst, A., 2007. Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems. Joural of the Energy Institute 80, 116-119.
Global CCS Institute, 2016The Global Status of CCS: 2016 Summary Report.
Hauchhum, L. and P. Mahanta ,2016. Performance enhancement of CO2 capture from flue gas in a bubbling fluidized bed. Journal of the Energy Institute.
Huijgen, W. J. J., 2007. Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Conversion and Management 48(7), 1923-1935.
Hwang, K.-S., 2010. Sorption kinetics of carbon dioxide onto rubidium carbonate. Korean Journal of Chemical Engineering 26(5), 1383-1388.
IEA, 2016. Key Trends in CO2 emissions from fuel combustion.
IPCC, 2004. Sources of CO2.
IPCC, 2014. Synthesis Report Summary for Policymakers.
Jansenc, D., Gazzania, M., Manzolinib, G., van Dijkc, E., and Carboc, M., 2015. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control 30, 167-187.
Kamal Nosrati, S. M., Mohammad Amin Sobati, Ali Akbar Sarbanha , 2016. Experimental study on the pressure wave attenuation across gas-solid fluidized bed by single bubble injection. Powder Technology.
Khalilpour, R., 2015. Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production 103, 286-300.
Ko, T.-H., 2012. Removal of Hydrogen Sulfide by Iron-Rich Soil: Application of the Deactivation Kinetic Model for Fitting Breakthrough Curve. Aerosol and Air Quality Research.
Koiwanit, J., 2016. Human health risks of post- and oxy-fuel combustion carbon dioxide capture technologies: Hypothetically modeled scenarios. International Journal of Greenhouse Gas Control 47, 279-290.
Kunzler, C., 2011. CO2 storage with indirect carbonation using industrial waste. Energy Procedia 4, 1010-1017.
Kunii D. and Levenspiel O., 1977 .Fluidization Engineering. Wiley, New York.
Kunii,D.andLevenspiel,O.,1991.FluidizationEngineering.Butter-worth-Heinemann Publishing, Inc, 2nd Ed.
Jenkins, Y.S., Yang, S.M., 2000. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Separation and Purification Technology 21, 101-109
Jenkins, H, 2008. Le Chatelier's Principle. Chemical Thermodynamics at a Glance, 160-163.
Lee, D. K., 2013. Kinetic Expression for the Carbonation Reaction of K2CO3/ZrO2Sorbent for CO2 Capture. Industrial & Engineering Chemistry Research 52(26), 9323-9329.
Lee, M. S., 2015. Development and evaluation of calcium oxide absorbent immobilized on fibrous ceramic fabrics for high temperature carbon dioxide capture. Powder Technology 274, 313-318.
Leung, D. Y. C., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 39,426-443.
Li, T., 2014. Carbon dioxide removal by using Mg(OH)2 in a bubble column: Effects of various operating parameters. International Journal of Greenhouse Gas Control 31, 67-76.
Levenspiel, O., 1999. Chemical reaction engineering. Ind Eng Chem Res
38, 4140-4143.
Mondal, M. K., 2012. Progress and trends in CO2 capture/separation technologies: A review. Energy 46(1), 431-441.
M. Wanga* A. Lawala, P. S., J. Siddersb, C. Ramshawa and H. Yeunga , 2011. Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art
Materic, V., Smedly, S.I.,2011. High temperature carbonation of Ca(OH)2. Ind Eng Chem Res 50,5927-5923.
Manovic, V.; Anthony, E. J., “Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles, Environmental Science & Technology, vol. 41(4), pp. 1420–1425, 2007.
Monazam, E.R., Shadle, L.J., Miller, D.C., Pennline, H.W., 2012. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica, AICHE J. http://dx.doi.org/10.1002/aic.13870.
Review. Chemical Engineering Research and Design 89: 1609-1624.
Puccini, M. S., Sandra Vitolo (2013). CO2 Capture at High Temperature and Low Concentration on Li4SiO4 Based Sorbents.Chemical Engineering Transactions.
Nail Yasyerli, T. D. U., GO lden DO~U, Irfan AR ,1996. DeactIvation model for textural effects om kinetics of gas-solid noncatalytic reactions char gasification with CO2. Chemical Engineering Science 5 I, 2523-2528.
Natali, I., 2014. Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implications in archaeology and paleontology. Langmuir 30(2), 660-668.
Nyten A., Stjerndahl M., Rensmo H., Siegbahn H., Armand M., Gustafsson T., Edstroma K., Thomas J. O., 2006. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS. Materials Chemistry, 16, 3483-3488.
Nikulshina, V., 2007. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle. Chemical Engineering Journal 129(1-3), 75-83.
NOAAESRL,2011. Trends in Atmospheric Carbon Dioxide.
Ozcan, D. C., 2015. Ca–Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes. International Journal of Greenhouse Gas Control 43, 198-212.
Pan, S.-Y. , 2012. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research.
Pan, S. Y., 2013. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23), 13677-13685.
Pan, S. Y., 2013. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7), 3308-3315.
Patil, R.S., Pandey,P., Mahanta, P., 2011. Parametric studies and effect of scale-up on wall-to-bed heat transfer characteristics of circulating fluidized bed riser, Exp. Therm. Fluid Sci. 35 485-494.
Puccini, M., Seggiani,M., Vitolo, M., 2013. CO2 Capture at High Temperature
and Low Concentration on Li4SiO4 Based Sorbents Chemical Engineering
Transactions,32 , 1279-1284
Rochelle, G. T. ,2009. Amine scrubbing for CO2 capture. Science 325(5948),
1652-1654.
Sakwattanapong R, Aroonwilas A, Veawab A, 2005. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. Ind Eng Chem Res, 44: 4465–4473.
Samanta, A., Zhao, A., Shimizu, G. K. H., Sarkar, P., Gupta, R., 2012. Post-Combustion CO2Capture Using Solid Sorbents: A Review. Industrial & Engineering Chemistry Research 51(4), 1438-1463.
Suhas K. Mahuli, R. A., Raja Jadhav, Shriniwas Chauk, and L.-S. Fan ,1999.
Sun, Y., 2011. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chemical Engineering Journal 173(2), 437-445.
Scott Fogler, H.,2013. Chemical_Reaction_Engineering Prentice Hall Parcial.
Scott Fogler, H., 2013. Elements of Chemical Reaction Engineering (Fourth Edition).
Sivakumar, P., Palanisamy., P.N., 2009. Adsorption studies of basic red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorumL, Int. J. Chem Tech Res.1(3) 502-510.
Sreenivasulu, B., Gayatri, D. V., Sreedhar, I ., Raghavan, K. V. ,2015.A journey into the process and engineering aspects of carbon capture technologies. Renew. Sustain. Energy Rev, vol. 41, 1324–1350.
Suyadal, Y.; Erol, M.; Oǧuz, H., 2000. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed, Ind. Eng. Chem. Res., vol. 39, 724-730.
Stefan, R., 2012. Sea-level rise: towards understanding local vulnerability.
Environ. Res. Lett. 7
Taiwan Environmental Protection Administration, 2016. Taiwam Greenhouse Gas Inventory.
The Air Liquide Gas Encyclopedia, 2016. https://encyclopedia.airliquide.com/
Theo, W. L., 2016. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy 183, 1633-1663.
Valverde, J. M., 2012. CO2 capture enhancement in a fluidized bed of a modified Geldart C powder. Powder Technology 224, 247-252.
Wang, M., 2011. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design 89(9), 1609-1624.
Weng, W.-T. K. a. M.-W., 2009. Utilization of Desulfurization/Granulated Blast Furnace Slag as Controlled Low Strength Material Without Portland Cement.
Wisniewski,M., 2005. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x. Catalysis Communications 6(9), 596-600.
Wu, S. F., Beum.,T.H,.Yang,J.I.,and Kim,.N., 2007. Properties of Ca-Base CO2 Sorbent Using Ca(OH)2 as Precursor. Chemistry Research 46, 7896-7899.
Wu, X., 2014. The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia 63, 1339-1346.
Y. Suyadal, M. E., and H. Ogˇuz , 2000. Deactivation Model for the Adsorption of Trichloroethylene Vapor on an Activated Carbon Bed. Ind. Eng. Chem. Res 39,724-730.
Yang, H., 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20(1), 14-27.
Yang Lei, Y. H., WANG shengqiang, ZHOU Qibin, WANG Haowen , 2012. High temperature absorption of CO2 and breakthrough characteristics of CaO_FA sorbents. CIESC 63.
Yi, H., 2012. An Overview of Utilization of Steel Slag. Procedia Environmental Sciences 16, 791-801.
Yu, F.-C. and L.-S. Fan , 2011. Kinetic Study of High-Pressure Carbonation Reaction of Calcium-Based Sorbents in the Calcium Looping Process (CLP).
Yu, J. and K. Wang , 2011. Study on Characteristics of Steel Slag for CO2 Capture. Energy & Fuels 25(11), 5483-5492.
Yadav, V. S., 2010. Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176(1-3), 1044-1050.
Zhang, N. and N. Lior , 2006. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy 31(10-11), 1666-1679.
Zhang, X., 2013. Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy & Fuels 27(8), 4137-4149.
Zhao, C., 2012. Carbonation Behavior and the Reaction Kinetic of a New Dry Potassium-Based Sorbent for CO2 Capture. Industrial & Engineering Chemistry Research 51(44), 14361-14366.
Scottish carbon capture & storage Association, 2016, http://www.sccs.org.uk/education-and-training/ccs-education-centre.
經濟部能源局,能源供給(按能源別)及國內能源消費, 2014.
吳國光、張育誠、焦鴻文,2012.富氧燃燒技術各產業應用現況,燃燒季刊第二十一期,頁37-50.
中國鋼業股份有限公司 ,2003. 爐石利用.
中國鋼業股份有限公司 ,2014.2014 Corporate Sustainability Report.
行政院環境保護署 ,2014.中華民國國家溫室氣體統計.
錢建崧,流體化床技術,高立圖書有限公司,1992.
博精儀器股份有限公司, ICP-OES.
陳稜援、吳慧眼,儀器分析,三民書局,2000.
李芹超,陜紹云,賈慶明,蔣雨紅,王亞明, 2010.二氧化碳高溫固體吸收劑的研究發展.Bulletin of the Chinese Ceramic Society第29期,頁622-626.
余秉澤, 2014.以還原渣廢器材料捕捉二氧化碳之研究.國立中央大學環境工程學系碩士論文.沈甯堯, 2016. 以流體化床反應器探討轉爐石去除純氧燃燒煙氣中二氧化碳. 國立成功大學環境工程學系碩士論文.高綾君, 2009. 以爐石在高溫下去除二氧化碳之研究, 國立成功大學環境工程學系碩士論文.連彩綺, 2015. 以脫硫渣在流體化床中去除純氧燃燒煙氣中二氧化碳之研究. 國立成功大學環境工程學系碩士論文.廖平浩, 2012. 純氧燃燒中以爐石在高溫下去除二氧化碳之研究.國立成功大學環境工程學系碩士論文.劉邦龍, 2013. 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究. 土木工程學系, 國立中央大學.
林柏翰, 2012.轉爐石/氫氧化鈣吸收劑高溫硫酸化與碳酸化反應之研究.國立臺灣大學碩士論文.