跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁凱鈞
研究生(外文):kai-junLiang
論文名稱:以流體化床系統探討脫硫渣和水淬爐石去除純氧燃燒煙氣中二氧化碳
論文名稱(外文):Sorption of Carbon Dioxide from Oxy-fuel Combustion by Desulfurization and Water-quenched slags in a Fluidized Bed Reactor
指導教授:朱信朱信引用關係
指導教授(外文):Hsin chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:156
中文關鍵詞:二氧化碳捕獲純氧燃燒流體化床碳酸化脫硫渣水淬爐石。
外文關鍵詞:CO2 captureoxy-fuel combustionfluidized bed reactor systemcarbonationDe-S slagGGBS slag.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
近年來經濟蓬勃發展,化石燃料已被人類廣泛使用,大量化石燃料燃燒釋放大量的二氧化碳加劇溫室效應影響。為了解決這些問題很多研究學家因此投入二氧化碳捕獲和封存技術研究。純氧燃燒系統是一種二氧化碳濃縮技術,在煙道尾氣端會排放高濃度的二氧化碳利於捕獲,並可以降低捕獲成本。因此本研究使用脫硫渣和水淬爐石作為固態吸附劑,不僅可降低吸附劑的成本,而且具有較高的鈣含量利於捕獲流化床反應器系統中煙道氣的二氧化碳和增加爐石再利用性。因此本研究模擬純氧燃燒之煙道氣條件,探討在流體化床反應系統中在高溫下使用脫硫渣和水淬爐石捕獲二氧化碳效果。
本研究操作條件及研究成果分為下列幾部分說明:
1.隨著溫度上升,在各種粒徑下的脫硫渣和水淬爐石的最小流化化速度經驗公式預測和實驗結果都是下降的趨勢。然而,爐渣顆粒的粒徑大小和比重也會影響各種溫度下最小流體化速度的數值。
2.根據TGA結果得知,脫硫渣和水淬爐石在不同溫度下與二氧化碳反應,脫硫渣重量變化遠高於水淬爐石,由XRD結果得知水淬爐石為非結晶固體在一定溫度下結構容易軟化,經研究發現在高溫下脫硫渣碳酸化反應遠優於水淬爐石。
3.在流體化床反應系統中,根據不同操作條件有溫度、水氣濃度、流速、二氧化碳濃度等參數。實驗結果發現二氧化碳濃度增加會使二氧化碳分壓提高而對爐渣的利用有顯著的影響;當氣體速度達到最小流化速度時,各種粒度的爐渣的利用率最好;而隨著提高流體化速度,爐渣利用率會隨之下降;在高溫下反應,在各種粒度的脫硫渣在5%的少量水氣濃度條件下可以促進二氧化碳捕獲。然而在各種粒徑的脫硫渣在10%的過量的水氣濃度條件下將會影響孔洞結構。
4.對於不同粒徑的脫硫渣在不同溫度下捕獲二氧化碳,發現其最佳溫度為600℃;對於不同粒徑的水淬爐石在不同溫度下捕獲二氧化碳,其最佳操作溫度為500℃。
5.以實驗室規模進行尺寸放大10倍的模場實驗,使用150-300μm粒徑的脫硫渣進行實驗,發現脫硫渣捕獲二氧化碳最佳溫度為600℃。因此在600℃下以脫硫渣進行從空氣和純氧燃燒條件下煙氣中捕獲二氧化碳。經由實驗結果發現純氧燃燒條件下脫硫渣捕獲二氧化碳的利用率高於空氣燃燒。
In recent years, fossil fuel has been widely used by human thus booming the economy. A great amount of carbon dioxide releasing from fossil fuel combustion causes the global warming. As a result, carbon dioxide capture and storage techniques are needed to solve this issue. Oxy-fuel combustion system is a carbon dioxide capture technology, contributing to higher capture efficiency due to concentrated CO2, decreasing processing cost, and easy alterations. This study used the water-quenched slag and the desulfurization slag as the sorbents. It not only reduces the cost of sorbent but also has a high calcium content that can highly absorb CO2 of the flue gas in a fluidized bed reactor system and increases the reutilization of the waste. Therefore, this study simulated oxy-fuel combustion condition to capture carbon dioxide with De-S and GGBS slags in a fluidized bed reactor system at high temperature.
Results of this study are summarized as follows:
1.With the increasing temperature both for empirical model prediction and experimental results, the minimum fluidized velocity of De-S and GGBS slags at various particle sizes have a decrease trend. However, the particle size and particle density of slags can influence the values of the minimum fluidized velocity at various temperatures.
2.According to the results of TGA analysis, De-S and GGBS slags react with carbon dioxide at various temperatures, weight change of the De-S slag is much higher than the GGBS slag.
3.Regarding to the various operating parameters such as temperature, water vapor, flow velocity and CO2 concentration, it can be found that an increase of the carbon dioxide concentration can significant impact the slags sorption utilization. When the gas velocity reaches minimum fluidized velocity, the sorption utilization sorption of the slags at various particle sizes will be the best. As the velocity becomes higher than minimum fluidized velocity, the slag sorption utilization decreases. The little water vapor for 5% can promote CO2 capture of slag at various particle sizes and excessive water vapor for 10% at various particle sizes affect pore structure.
4.The best operating temperature is about 600oC for the CO2 capture with De-S slag at various particle sizes; the best operating temperature is about 500oC for the CO2 capture with GGBS slag at various particle sizes. It can be found that De-S slags at various particle sizes for the CO2 capture are superior to the GGBS slags .
5.The pilot plant is 10 times the size of the laboratory set, conducting the capture of carbon dioxide from air and oxy-fuel combustion conditions. It can be found that the utilization of 150-300μm De-S slag at 600 oC is better than other temperature. The utilization of 150-300μm De-S slags for the capture of carbon dioxide from oxy-fuel combustion is higher than air combustion due to the increase in carbon dioxide partial pressure of the flue gas from oxy-fuel combustion.
摘要 I
Abstract III
致謝 V
Content VII
List of Figures XI
List of Tables XVI
Chapter 1Introduction 1
1-1Motivation 1
1-2Objectives 4
Chapter 2Literature Reviews 5
2-1Introduction to CO2 5
2-1.1Source 5
2-1.2Property 10
2-1.3Influence 12
2-2Principle of CO2 capture technique 16
2-2.1Absorption 18
2-2.2Cryogenic separation 22
2-2.3Membrane separation 23
2-3The positon for CO2 capture technique 24
2-3.1Post-combustion capture 24
2-3.2Pre-combustion capture 24
2-3.3Oxy-fuel combustion capture or O2 /CO2 combustion 25
2-3.4Comparison of carbon capture technologies 26
2-4Fluidized Bed 30
2-4.1Fluidization 30
2-4.2Minimum fluidized velocity 32
2-4.3Relationship between pressure drop and velocity 35
2-5Slag of Integrated Steel Work 37
2-5.1Ground-granulated blast furnaced and De-S slag 39
2-5.2Application of GGBS and De-S slag 40
2-6Activity decay of sorbent 42
2-7Influence of operating parameters 43
2-8Kinetics 45
2-8.1Deactivation model for the carbonation reaction 45
2-8.2Arrhenius equations 47
Chapter 3Methods and Materials 48
3-1Experimental methods 48
3-1.1Experimental design 48
3-1.2Experimental process 51
3-2Experimental equipments 52
3-2.1Experimental material 52
3-2.2Experimental facility 53
3-2.3Analyzers 60
3-3Preparation experiment 65
3-3.1Leakage proof of the system 65
3-3.2The slag preparation 65
3-3.3Span and zero 65
3-3.4Blank experiment 66
3-3.5Place the slag in the system 66
Chapter 4 Results and discussion 68
4-1Fluidization 70
4-1.1The relationship between pressure drop and superficial velocity 70
4-1.2The minimum fluidized velocity 73
4-2Characteristics of sorbents 79
4-2.1XRD analysis 79
4-2.2ICP-OES analysis 84
4-2.3TGA experiment 87
4-2.4BET surface area analysis 90
4-3Operating parameter experiment 93
4-3.1The De-S slag of 210-250μm 95
4-3.2The De-S slag of 177-210μm 99
4-3.3The GGBS slag of 210-250μm 103
4-3.4The GGBS slag of 177-210μm 106
4-4Characteristics of sorbents before and after carbonation 108
4-4.1SEM analysis 108
4-4.2EDS analysis 111
4-4.3Mapping analysis 116
4-4.4XPS analysis 121
4-4.5XRD analysis 124
4-5Pilot scale study 129
4-6Kinetics 135
Chapter 5Conclusions and suggestions 141
5-1Conclusions 141
5-2Suggestions 141
Chapter 6References 144
Appendix 154
Abanades, J.C., Alvarez, D., 2003.Conversion limits in the reaction of CO2 with lime. Energy & Fuels, 17(2), 308-315,

Abanades, J. C., 2004. Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE Journal 50(7),1614-1622.

Alonso, M., 2011. Capture of CO2 during low temperature biomass combustion in a fluidized bed using CaO. Process description, experimental results and economics.Energy Procedia 4, 795-802.

Barbosa, R. C., 2016. The Use of a High Limestone Content Mining Waste as a Sorbent for CO2 Capture. Brazilian Journal of Chemical Engineering 33(3),599-606.

Babu, P., 2015. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85, 261-279.

Banaszkiewicz,T., 2014.Comparative Analysis of Oxygen Production for Oxy-combustion Application. Energy Procedia 51, 127-134.

Bachu, S., Simbeck, D., Thambimuthu, K., 2012. Properties of CO2 and carbon-based fuels. IPCC, 385-398.

Carlos Herce, A. C., Stefano Stendardo , 2010. Numerical simulation of a high temperature CO2 capture fluidized bed. Processes and Technologies for a Sustainable Energy, 27-30.

Chang, E. E., 2012. CO2 Capture by Using Blended Hydraulic Slag Cement via a Slurry Reactor. Aerosol and Air Quality Research.

Chang,E.E., 2012. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J Hazard Mater 227-228, 97-106.

Chen, L., 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science 38(2), 156-214.

Chi, C.C. and Lin, TH., 2013. Oxy-oil combustion characteristics of an existing furnace.Applied Energy 102, 923-930.

Combined calcination, sintering and sulfation model for CaCo3-SO2 reaction. AICHE Journal 45.

Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis I., Galiotis C., 2008. Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840.

Diego, L. F. de, Rufas, A., García-Labiano, F., Obras-Loscertales, M. de las, Abad, A., Gayán, P., Adánez, J., 2013.Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions, Fuel, vol. 114, pp. 106-113.

Elsevier Ltd, 2015. Climate Record: Surface Temperature Trends. Encyclopedia of Atmospheric Sciences , 2nd edition.

Eloneva, S., 2010. Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 – legislative issues. Journal of Cleaner Production 18(18), 1833-1839.

Eloneva, S., 2008. Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9), 1461-1467.

Environmental Protection Administration, Executive Yuan, R.O.C, 2016

Smirniotis, E. P., 2004. High-Temperature Sorbents for CO2 Made of Alhali Metals Doped on CaO Supports, Physical Chemistry, 108(23), 7794-7800.
Fennell, P., Dennis, J., Hayhurst, A., 2007. Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems. Joural of the Energy Institute 80, 116-119.

Global CCS Institute, 2016The Global Status of CCS: 2016 Summary Report.

Hauchhum, L. and P. Mahanta ,2016. Performance enhancement of CO2 capture from flue gas in a bubbling fluidized bed. Journal of the Energy Institute.

Huijgen, W. J. J., 2007. Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Conversion and Management 48(7), 1923-1935.

Hwang, K.-S., 2010. Sorption kinetics of carbon dioxide onto rubidium carbonate. Korean Journal of Chemical Engineering 26(5), 1383-1388.

IEA, 2016. Key Trends in CO2 emissions from fuel combustion.

IPCC, 2004. Sources of CO2.

IPCC, 2014. Synthesis Report Summary for Policymakers.

Jansenc, D., Gazzania, M., Manzolinib, G., van Dijkc, E., and Carboc, M., 2015. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control 30, 167-187.

Kamal Nosrati, S. M., Mohammad Amin Sobati, Ali Akbar Sarbanha , 2016. Experimental study on the pressure wave attenuation across gas-solid fluidized bed by single bubble injection. Powder Technology.

Khalilpour, R., 2015. Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production 103, 286-300.

Ko, T.-H., 2012. Removal of Hydrogen Sulfide by Iron-Rich Soil: Application of the Deactivation Kinetic Model for Fitting Breakthrough Curve. Aerosol and Air Quality Research.


Koiwanit, J., 2016. Human health risks of post- and oxy-fuel combustion carbon dioxide capture technologies: Hypothetically modeled scenarios. International Journal of Greenhouse Gas Control 47, 279-290.

Kunzler, C., 2011. CO2 storage with indirect carbonation using industrial waste. Energy Procedia 4, 1010-1017.

Kunii D. and Levenspiel O., 1977 .Fluidization Engineering. Wiley, New York.

Kunii,D.andLevenspiel,O.,1991.FluidizationEngineering.Butter-worth-Heinemann Publishing, Inc, 2nd Ed.

Jenkins, Y.S., Yang, S.M., 2000. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Separation and Purification Technology 21, 101-109
Jenkins, H, 2008. Le Chatelier's Principle. Chemical Thermodynamics at a Glance, 160-163.

Lee, D. K., 2013. Kinetic Expression for the Carbonation Reaction of K2CO3/ZrO2Sorbent for CO2 Capture. Industrial & Engineering Chemistry Research 52(26), 9323-9329.

Lee, M. S., 2015. Development and evaluation of calcium oxide absorbent immobilized on fibrous ceramic fabrics for high temperature carbon dioxide capture. Powder Technology 274, 313-318.

Leung, D. Y. C., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 39,426-443.

Li, T., 2014. Carbon dioxide removal by using Mg(OH)2 in a bubble column: Effects of various operating parameters. International Journal of Greenhouse Gas Control 31, 67-76.

Levenspiel, O., 1999. Chemical reaction engineering. Ind Eng Chem Res
38, 4140-4143.


Mondal, M. K., 2012. Progress and trends in CO2 capture/separation technologies: A review. Energy 46(1), 431-441.

M. Wanga* A. Lawala, P. S., J. Siddersb, C. Ramshawa and H. Yeunga , 2011. Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art
Materic, V., Smedly, S.I.,2011. High temperature carbonation of Ca(OH)2. Ind Eng Chem Res 50,5927-5923.

Manovic, V.; Anthony, E. J., “Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles, Environmental Science & Technology, vol. 41(4), pp. 1420–1425, 2007.

Monazam, E.R., Shadle, L.J., Miller, D.C., Pennline, H.W., 2012. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica, AICHE J. http://dx.doi.org/10.1002/aic.13870.

Review. Chemical Engineering Research and Design 89: 1609-1624.

Puccini, M. S., Sandra Vitolo (2013). CO2 Capture at High Temperature and Low Concentration on Li4SiO4 Based Sorbents.Chemical Engineering Transactions.

Nail Yasyerli, T. D. U., GO lden DO~U, Irfan AR ,1996. DeactIvation model for textural effects om kinetics of gas-solid noncatalytic reactions char gasification with CO2. Chemical Engineering Science 5 I, 2523-2528.

Natali, I., 2014. Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implications in archaeology and paleontology. Langmuir 30(2), 660-668.

Nyten A., Stjerndahl M., Rensmo H., Siegbahn H., Armand M., Gustafsson T., Edstroma K., Thomas J. O., 2006. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS. Materials Chemistry, 16, 3483-3488.
Nikulshina, V., 2007. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle. Chemical Engineering Journal 129(1-3), 75-83.

NOAAESRL,2011. Trends in Atmospheric Carbon Dioxide.

Ozcan, D. C., 2015. Ca–Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes. International Journal of Greenhouse Gas Control 43, 198-212.

Pan, S.-Y. , 2012. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research.

Pan, S. Y., 2013. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23), 13677-13685.

Pan, S. Y., 2013. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7), 3308-3315.

Patil, R.S., Pandey,P., Mahanta, P., 2011. Parametric studies and effect of scale-up on wall-to-bed heat transfer characteristics of circulating fluidized bed riser, Exp. Therm. Fluid Sci. 35 485-494.

Puccini, M., Seggiani,M., Vitolo, M., 2013. CO2 Capture at High Temperature
and Low Concentration on Li4SiO4 Based Sorbents Chemical Engineering
Transactions,32 , 1279-1284

Rochelle, G. T. ,2009. Amine scrubbing for CO2 capture. Science 325(5948),
1652-1654.

Sakwattanapong R, Aroonwilas A, Veawab A, 2005. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. Ind Eng Chem Res, 44: 4465–4473.
Samanta, A., Zhao, A., Shimizu, G. K. H., Sarkar, P., Gupta, R., 2012. Post-Combustion CO2Capture Using Solid Sorbents: A Review. Industrial & Engineering Chemistry Research 51(4), 1438-1463.

Suhas K. Mahuli, R. A., Raja Jadhav, Shriniwas Chauk, and L.-S. Fan ,1999.

Sun, Y., 2011. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chemical Engineering Journal 173(2), 437-445.

Scott Fogler, H.,2013. Chemical_Reaction_Engineering Prentice Hall Parcial.

Scott Fogler, H., 2013. Elements of Chemical Reaction Engineering (Fourth Edition).

Sivakumar, P., Palanisamy., P.N., 2009. Adsorption studies of basic red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorumL, Int. J. Chem Tech Res.1(3) 502-510.

Sreenivasulu, B., Gayatri, D. V., Sreedhar, I ., Raghavan, K. V. ,2015.A journey into the process and engineering aspects of carbon capture technologies. Renew. Sustain. Energy Rev, vol. 41, 1324–1350.

Suyadal, Y.; Erol, M.; Oǧuz, H., 2000. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed, Ind. Eng. Chem. Res., vol. 39, 724-730.

Stefan, R., 2012. Sea-level rise: towards understanding local vulnerability.
Environ. Res. Lett. 7

Taiwan Environmental Protection Administration, 2016. Taiwam Greenhouse Gas Inventory.


The Air Liquide Gas Encyclopedia, 2016. https://encyclopedia.airliquide.com/

Theo, W. L., 2016. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy 183, 1633-1663.

Valverde, J. M., 2012. CO2 capture enhancement in a fluidized bed of a modified Geldart C powder. Powder Technology 224, 247-252.

Wang, M., 2011. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design 89(9), 1609-1624.

Weng, W.-T. K. a. M.-W., 2009. Utilization of Desulfurization/Granulated Blast Furnace Slag as Controlled Low Strength Material Without Portland Cement.

Wisniewski,M., 2005. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x. Catalysis Communications 6(9), 596-600.

Wu, S. F., Beum.,T.H,.Yang,J.I.,and Kim,.N., 2007. Properties of Ca-Base CO2 Sorbent Using Ca(OH)2 as Precursor. Chemistry Research 46, 7896-7899.

Wu, X., 2014. The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia 63, 1339-1346.

Y. Suyadal, M. E., and H. Ogˇuz , 2000. Deactivation Model for the Adsorption of Trichloroethylene Vapor on an Activated Carbon Bed. Ind. Eng. Chem. Res 39,724-730.

Yang, H., 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20(1), 14-27.

Yang Lei, Y. H., WANG shengqiang, ZHOU Qibin, WANG Haowen , 2012. High temperature absorption of CO2 and breakthrough characteristics of CaO_FA sorbents. CIESC 63.

Yi, H., 2012. An Overview of Utilization of Steel Slag. Procedia Environmental Sciences 16, 791-801.

Yu, F.-C. and L.-S. Fan , 2011. Kinetic Study of High-Pressure Carbonation Reaction of Calcium-Based Sorbents in the Calcium Looping Process (CLP).
Yu, J. and K. Wang , 2011. Study on Characteristics of Steel Slag for CO2 Capture. Energy & Fuels 25(11), 5483-5492.

Yadav, V. S., 2010. Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176(1-3), 1044-1050.

Zhang, N. and N. Lior , 2006. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy 31(10-11), 1666-1679.

Zhang, X., 2013. Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy & Fuels 27(8), 4137-4149.

Zhao, C., 2012. Carbonation Behavior and the Reaction Kinetic of a New Dry Potassium-Based Sorbent for CO2 Capture. Industrial & Engineering Chemistry Research 51(44), 14361-14366.

Scottish carbon capture & storage Association, 2016, http://www.sccs.org.uk/education-and-training/ccs-education-centre.
經濟部能源局,能源供給(按能源別)及國內能源消費, 2014.

吳國光、張育誠、焦鴻文,2012.富氧燃燒技術各產業應用現況,燃燒季刊第二十一期,頁37-50.
中國鋼業股份有限公司 ,2003. 爐石利用.

中國鋼業股份有限公司 ,2014.2014 Corporate Sustainability Report.

行政院環境保護署 ,2014.中華民國國家溫室氣體統計.

錢建崧,流體化床技術,高立圖書有限公司,1992.

博精儀器股份有限公司, ICP-OES.
陳稜援、吳慧眼,儀器分析,三民書局,2000.

李芹超,陜紹云,賈慶明,蔣雨紅,王亞明, 2010.二氧化碳高溫固體吸收劑的研究發展.Bulletin of the Chinese Ceramic Society第29期,頁622-626.

余秉澤, 2014.以還原渣廢器材料捕捉二氧化碳之研究.國立中央大學環境工程學系碩士論文.

沈甯堯, 2016. 以流體化床反應器探討轉爐石去除純氧燃燒煙氣中二氧化碳. 國立成功大學環境工程學系碩士論文.

高綾君, 2009. 以爐石在高溫下去除二氧化碳之研究, 國立成功大學環境工程學系碩士論文.

連彩綺, 2015. 以脫硫渣在流體化床中去除純氧燃燒煙氣中二氧化碳之研究. 國立成功大學環境工程學系碩士論文.

廖平浩, 2012. 純氧燃燒中以爐石在高溫下去除二氧化碳之研究.國立成功大學環境工程學系碩士論文.

劉邦龍, 2013. 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究. 土木工程學系, 國立中央大學.

林柏翰, 2012.轉爐石/氫氧化鈣吸收劑高溫硫酸化與碳酸化反應之研究.國立臺灣大學碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊