|
1.Mehrotra, R., et al., Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch Intern Med, 2011. 171(2): p. 110-8. 2.Fenton, S.S., et al., Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis, 1997. 30(3): p. 334-42. 3.Huang, C.C., K.F. Cheng, and H.D. Wu, Survival analysis: comparing peritoneal dialysis and hemodialysis in Taiwan. Perit Dial Int, 2008. 28 Suppl 3: p. S15-20. 4.Vonesh, E.F., et al., Mortality studies comparing peritoneal dialysis and hemodialysis: what do they tell us? Kidney Int Suppl, 2006(103): p. S3-11. 5.Dennis Fry, M., Peritoneal Dialysis in ESRD Patients_ Case planning and techniques for this cost-effective method of renal replacement therapy. Endovascular Today, 2012. 6.Kawaguchi, Y., et al., Issues affecting the longevity of the continuous peritoneal dialysis therapy. Kidney Int Suppl, 1997. 62: p. S105-7. 7.Davies, S.J., et al., What really happens to people on long-term peritoneal dialysis? Kidney Int, 1998. 54(6): p. 2207-17. 8.Han, S.H., et al., Improving outcome of CAPD: twenty-five years' experience in a single Korean center. Perit Dial Int, 2007. 27(4): p. 432-40. 9.Nakamoto, H., Y. Kawaguchi, and H. Suzuki, Is technique survival on peritoneal dialysis better in Japan? Perit Dial Int, 2006. 26(2): p. 136-43. 10.Schaefer, F., et al., Current practice of peritoneal dialysis in children: results of a longitudinal survey. Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS). Perit Dial Int, 1999. 19 Suppl 2: p. S445-9. 11.Woodrow, G., J.H. Turney, and A.M. Brownjohn, Technique failure in peritoneal dialysis and its impact on patient survival. Perit Dial Int, 1997. 17(4): p. 360-4. 12.Davies, S.J., et al., Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol, 2001. 12(5): p. 1046-51. 13.Krediet, R.T., The peritoneal membrane in chronic peritoneal dialysis. Kidney Int, 1999. 55(1): p. 341-56. 14.Lee, Y.C., et al., Vitamin D can ameliorate chlorhexidine gluconate-induced peritoneal fibrosis and functional deterioration through the inhibition of epithelial-to-mesenchymal transition of mesothelial cells. Biomed Res Int, 2015. 2015: p. 595030. 15.Yanez-Mo, M., et al., Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med, 2003. 348(5): p. 403-13. 16.Zheng, Z., et al., Peritoneal dialysis solutions disturb the balance of apoptosis and proliferation of peritoneal cells in chronic dialysis model. Adv Perit Dial, 2001. 17: p. 53-7. 17.Holmes, C.J. and D. Faict, Peritoneal dialysis solution biocompatibility: definitions and evaluation strategies. Kidney Int Suppl, 2003(88): p. S50-6. 18.Lee, Y.C., et al., Shorter daily dwelling time in peritoneal dialysis attenuates the epithelial-to-mesenchymal transition of mesothelial cells. BMC Nephrol, 2014. 15: p. 35. 19.Aroeira, L.S., et al., Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol, 2007. 18(7): p. 2004-13. 20.Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42. 21.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 22.Perl, A.K., et al., A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 1998. 392(6672): p. 190-3. 23.Takeichi, M., Morphogenetic roles of classic cadherins. Curr Opin Cell Biol, 1995. 7(5): p. 619-27. 24.Yang, L., et al., Effect of 1,25(OH)(2)D(3) on rat peritoneal mesothelial cells treated with high glucose plus lipopolysaccharide. Cell Immunol, 2011. 271(1): p. 173-9. 25.Coronel, F., et al., Changes in peritoneal membrane permeability and proteinuria in patients on peritoneal dialysis after treatment with paricalcitol - a preliminary study. Clin Nephrol, 2012. 78(2): p. 93-9. 26.Hirose, M., et al., 22-Oxacalcitriol prevents progression of peritoneal fibrosis in a mouse model. Perit Dial Int, 2013. 33(2): p. 132-42. 27.Kang, S.H., et al., Paricalcitol ameliorates epithelial-to-mesenchymal transition in the peritoneal mesothelium. Nephron Exp Nephrol, 2014. 126(1): p. 1-7. 28.Lee, C.J., et al., Calcitriol decreases TGF-beta1 and angiotensin II production and protects against chlorhexide digluconate-induced liver peritoneal fibrosis in rats. Cytokine, 2014. 65(1): p. 105-18. 29.Gonzalez-Mateo, G.T., et al., Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production. PLoS One, 2014. 9(10): p. e108477. 30.Wilczewska, A.Z., et al., Nanoparticles as drug delivery systems. Pharmacol Rep, 2012. 64(5): p. 1020-37. 31.Patil, S., et al., Synthesis, characterization and in vitro evaluation of novel vitamin D3 nanoparticles as a versatile platform for drug delivery in cancer therapy. Journal of Materials Chemistry B, 2013. 1(42): p. 5742. 32.Nevozhay, D., et al., [Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases]. Postepy Hig Med Dosw (Online), 2007. 61: p. 350-60. 33.Perez-Martinez, F.C., et al., Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res, 2011. 28(8): p. 1843-58. 34.Ortega, A., et al., Antimicrobial evaluation of quaternary ammonium polyethyleneimine nanoparticles against clinical isolates of pathogenic bacteria. IET Nanobiotechnol, 2015. 9(6): p. 342-8. 35.Santamaria, B., et al., A nanoconjugate Apaf-1 inhibitor protects mesothelial cells from cytokine-induced injury. PLoS One, 2009. 4(8): p. e6634. 36.Yoshizawa, H., et al., TGF-beta(1)-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther, 2015. 22(4): p. 333-40. 37.Almouazen, E., et al., Nano-encapsulation of vitamin D3 active metabolites for application in chemotherapy: formulation study and in vitro evaluation. Pharm Res, 2013. 30(4): p. 1137-46. 38.Kamaly, N., et al., Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol, 2016. 12(12): p. 738-753. 39.Williams, R.M., E.A. Jaimes, and D.A. Heller, Nanomedicines for kidney diseases. Kidney Int, 2016. 90(4): p. 740-5. 40.Harris, J.M. and R.B. Chess, Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov, 2003. 2(3): p. 214-21. 41.Choi, K.Y., et al., Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale, 2012. 4(2): p. 330-42. 42.Cheng, Z., et al., Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012. 338(6109): p. 903-10. 43.Rongjie FU, J.L.a.Y.W., Fat-Soluble Vitamins Analysis on an Agilent ZORBAX Eclipse PAH Polymeric C18 Bonded Column. Agilent Technologies, 2010. 5990-5342EN. 44.Diaz, C., et al., Ex vivo proliferation of mesothelial cells directly obtained from peritoneal effluent: its relationship with peritoneal antecedents and functional parameters. Adv Perit Dial, 1998. 14: p. 19-24. 45.Li, C., et al., Twist overexpression promoted epithelial-to-mesenchymal transition of human peritoneal mesothelial cells under high glucose. Nephrol Dial Transplant, 2012. 27(11): p. 4119-24. 46.Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83. 47.Wang, J., et al., 20-hydroxyvitamin D(3) inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Res, 2012. 32(3): p. 739-46. 48.Zhu, F., et al., Preventive effect of Notch signaling inhibition by a gamma-secretase inhibitor on peritoneal dialysis fluid-induced peritoneal fibrosis in rats. Am J Pathol, 2010. 176(2): p. 650-9. 49.Abbasi, A., et al., Stability of vitamin D(3) encapsulated in nanoparticles of whey protein isolate. Food Chem, 2014. 143: p. 379-83. 50.Sengupta, P., et al., Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci U S A, 2012. 109(28): p. 11294-9. 51.Davis, M.E., Z.G. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov, 2008. 7(9): p. 771-82. 52.Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-27. 53.Yameen, B., et al., Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release, 2014. 190: p. 485-99. 54.Okamoto, R., et al., Inecalcitol, an analog of 1alpha,25(OH)(2) D(3) , induces growth arrest of androgen-dependent prostate cancer cells. Int J Cancer, 2012. 130(10): p. 2464-73. 55.Beer, T.M. and A. Myrthue, Calcitriol in cancer treatment: from the lab to the clinic. Mol Cancer Ther, 2004. 3(3): p. 373-81. 56.Wang, R., et al., Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine, 2012. 7: p. 4185-98. 57.Ramalho, M.J., et al., PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein J Nanotechnol, 2015. 6: p. 1306-18.
|