跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 07:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡家瑜
研究生(外文):Chia-YuHu
論文名稱:轉換光學中的逆向光束追跡
論文名稱(外文):Reverse ray tracing for transformation optics
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Chun-Hung Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:137
中文關鍵詞:光束追跡轉換光學
外文關鍵詞:ray tracingtransformation optics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
因為因為超材料(Metamaterial)技術的進步,轉換光學(Transformation optics)被廣泛的討論,轉換光學可以利用空間中座標的轉換來控制電磁波的行進方向。幾何光學中,光束追跡是模擬光線軌跡和評估光學系統效率的工具。在轉換光學領域中,哈密頓運動方程式(Hamiltonian equations of motion)是一組微分方程式(Ordinary differential equations),可求解光線軌跡。轉換光學的材料特性因為經過座標變換,會有非線性,不均勻,非等向性的材料分佈,提高微分求解器解哈密頓運動方程式的難度。在過去相關研究中,仍無探討在微分方程式中可能產生的奇點,與在轉換座標空間與原始空間的界面可能發生的衰減波造成哈密頓運動方程式無法求解的情況。本論文提出逆向光束追跡,結合掃描求解(Sweeping method)哈密頓-雅可比方程(Hamiltonian-Jacobi)的方法與反向傳播(Back propagation),從感興趣的像面點計算光束線軌跡到光源。求解的步驟為,先掃描求解哈密頓-雅可比方程,得到感興趣元件的光程函數分佈(Eikonal map)。對光程函數分佈微分後求得波向量(Wave vector),波向量可以計算像面上的光束能量分佈。逆向光束追跡法適用在材料特性(Material tensor)滿足對稱的正定矩陣時(Positive definite)的任何轉換光學元件。此方法可避開求解哈密頓微分方程式的解。第一個實現例為一個朗伯光源(Lambertian source)到像面後光束可以垂直出射的元件,採用與解析解的光束線軌跡比較與觀測面的能量分佈,驗証逆向光束追跡的準確度。第二與第三個光學實現例分別為可調整出射光角度,與一個二次光學元件可以旋轉偏振方向90與使出射光垂直出射。本文提出的逆向光束追跡成功解決哈密頓運動方程式無法順利求解的情形。
Transformation optics have been widely discussed in the area of advanced metamaterials since it allows spatial coordinate transformations of electromagnetic fields. Ray tracing is a method for the simulation of ray propagation in geometrical optics allowing for calculation of the optical system efficiency. The Hamiltonian equations of motion are based on ordinary differential equations (ODEs) and are used for ray tracing. However, the full solution to ordinary differential equations is may not be easily found because of the complexities of the inhomogeneous and anisotropic indices of the optical device. The failure of ray tracing due to singularity and complex wave vectors at the interface between air and transformed spaces is not well studied. To resolve this deficiency, we provide a 3D reverse ray tracing method for these situations which combines the sweeping method for Hamilton–Jacobi equations and ray trajectory. The sweeping method provides the eikonal function (time map) of the interested domain and back-propagation from the location of interest to the source gives the ray trajectory. Wave vectors, which represent illuminance, are obtained from the gradient of the eikonal function map in the transformed space.
This approach is applicable in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. This method is not dependent on finding solutions to the Hamiltonian motion equations and also avoids the problems of a singularity or complex wave vector arising from the evanescent wave for the initial Hamiltonian motion equation conditions. In this thesis, the idea of transformation optics with function of directivity emitting and polarization rotation as secondary optics are explored. The accuracy of ray trajectories and illuminances are demonstratively solved by the proposed reverse ray tracing method for a number of example instances.
口試合格證明 I
Abstract II
摘要 III
誌謝 IV
Symbols XVI
Chapter 1 Background 1
1 Background 1
1.1 Introduction 1
1.2 Maxwell equations in transformation space 3
1.3 Transformation optics 9
1.4 Hamiltonian ray tracing in transformation optics 26
1.5 Fresnel coefficients in transformation optics 41
1.6 Illuminance 45
Chapter 2 Reverse ray tracing 48
2 Reverse ray tracing 48
2.1 Motivation of reverse ray tracing 48
2.2 Methods 61
2.3 Geodesic distance on manifolds 72
Chapter 3 Numerical Examples 77
3 Numerical examples 77
3.1 Reverse ray tracing for transformation optics 77
3.2 Simulation accuracy 84
3.3 Wave vector and illuminance 90
3.4 Example 1: A 3D highly directive emitting device 93
3.5 Example 2: A 3D highly directive emitting device with polarization conversion 97
Chapter 4 Conclusion 101
4 Conclusion 101
Reference 102
Appendix A 105
Appendix B 110
Appendix C 119
Appendix D 136
1.B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, Macroscopic Invisibility Cloak for Visible Light, Physical Review Letters 106, 033901 (2011).
2.X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. A. Zhang, Macroscopic invisibility cloaking of visible light, Nat Commun 2 (2011).
3.J. C. Halimeh, and M. Wegener, Photorealistic rendering of unidirectional free-space invisibility cloaks, Opt. Express 21, 9457-9472 (2013).
4.D. Schurig, J. B. Pendry, and D. R. Smith, Calculation of material properties and ray tracing in transformation media, Opt. Express 14, 9794-9804 (2006).
5.J. C. Halimeh, R. Schmied, and M. Wegener, Newtonian photorealistic ray tracing of grating cloaks and correlation-function-based cloaking-quality assessment, Opt. Express 19, 6078-6092 (2011).
6.N. Kundtz, and D. R. Smith, Extreme-angle broadband metamaterial lens, Nat Mater 9, 129-132 (2010).
7.A. S. Glassner, ed. An introduction to ray tracing (Academic Press Ltd., 1989).
8.M. Sluijter, D. K. G. de Boer, and J. J. M. Braat, General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media, J. Opt. Soc. Am. A 25, 1260-1273 (2008).
9.A. Akbarzadeh, and A. J. Danner, Generalization of ray tracing in a linear inhomogeneous anisotropic medium: a coordinate-free approach, J. Opt. Soc. Am. A 27, 2558-2562 (2010).
10.L. Shampine, and C. Gear, A User’s View of Solving Stiff Ordinary Differential Equations, SIAM Review 21, 1-17 (1979).
11.P. Deuflhard, A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numer. Math. 22, 289-315 (1974).
12.J. A. Ogilvy, A layered media model for ray propagation in anisotropic inhomogeneous materials, Applied Mathematical Modelling 14, 237-247 (1990).
13.U. Leonhardt, and T. G. Philbin, Chapter 2 Transformation Optics and the Geometry of Light, in Progress in Optics, E. Wolf, ed. (Elsevier, 2009), pp. 69-152.
14.J. Qian, Y.-T. Zhang, and H.-K. Zhao, A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations, J Sci Comput 31, 237-271 (2007).
15.A. Capozzoli, C. Curcio, A. Liseno, and S. Savarese, Two-dimensional fast marching for geometrical optics, Opt. Express 22, 26680-26695 (2014).
16.R. J. Koshel, Introduction and Terminology, in Illumination Engineering(John Wiley & Sons, Inc., 2013), pp. 1-30.
17.R. Leutz, and H. P. Annen, Reverse ray-tracing model for the performance evaluation of stationary solar concentrators, Solar Energy 81, 761-767 (2007).
18.K. E. Moore, R. F. Rykowski, and S. Gangadhara, Reverse radiance: a fast accurate method for determining luminance, (2012), pp. 84850I-84850I-84810.
19.U. Leonhardt, Optical Conformal Mapping, Science 312, 1777-1780 (2006).
20.J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science 312, 1780-1782 (2006).
21.D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science 314, 977-980 (2006).
22.J. Li, and J. B. Pendry, Hiding under the Carpet: A New Strategy for Cloaking, Physical Review Letters 101, 203901 (2008).
23.S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Physical Review E 74, 036621 (2006).
24.J. Hu, X. Zhou, and G. Hu, Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation, Opt. Express 17, 1308-1320 (2009).
25.M. Hashimoto, Geometrical optics of guided waves in waveguides, Progress In Electromagnetics Research 13, 115-147 (1996).
26.M. M. Crosskey, A. T. Nixon, L. M. Schick, and G. Kovačič, Invisibility cloaking via non-smooth transformation optics and ray tracing, Physics Letters A 375, 1903-1911 (2011).
27.Z. Qin, K. Wang, F. Chen, X. Luo, and S. Liu, Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle, Opt. Express 18, 17460-17476 (2010).
28.J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B. I. Wu, and J. A. Kong, Directive emission obtained by coordinate transformation, Prog Electromagn Res 81, 437-446 (2008).
29.D. H. Kwon, and D. H. Werner, Polarization splitter and polarization rotator designs based on transformation optics, Opt. Express 16, 18731-18738 (2008).
30.V. Vavrycuk, Real ray tracing in anisotropic viscoelastic media, Geophys J Int 175, 617-626 (2008).
31.J. A. Sethian, and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi equations, Proceedings of the National Academy of Sciences 98, 11069-11074 (2001).
32.E. Konukoglu, M. Sermesant, O. Clatz, J.-M. Peyrat, H. Delingette, and N. Ayache, A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling, in Information Processing in Medical Imaging: 20th International Conference, IPMI 2007, Kerkrade, The Netherlands, July 2-6, 2007. Proceedings, N. Karssemeijer, and B. Lelieveldt, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 687-699.
33.S. Luo, and J. Qian, Fast Sweeping Methods for Factored Anisotropic Eikonal Equations: Multiplicative and Additive Factors, J Sci Comput 52, 360-382 (2012).
34.S. Bak, J. McLaughlin, and D. Renzi, Some Improvements for the Fast Sweeping Method, SIAM Journal on Scientific Computing 32, 2853-2874 (2010).
35.Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class of Hamilton--Jacobi equations, SIAM journal on numerical analysis 41, 673-694 (2003).
36.S. G. Xu, Y. X. Zhang, and J. H. Yong, A Fast Sweeping Method for Computing Geodesics on Triangular Manifolds, IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 231-241 (2010).
37.J. Qian, Y. T. Zhang, and H. K. Zhao, Fast Sweeping Methods for Eikonal Equations on Triangular Meshes, SIAM Journal on Numerical Analysis 45, 83-107 (2007).
38.S. Joon-Kyung, J. Won-Ki, and E. Cohen, Anisotropic geodesic distance computation for parametric surfaces, in 2008 IEEE International Conference on Shape Modeling and Applications(2008), pp. 179-186.
39.S. Bougleux, G. Peyré, and L. Cohen, Anisotropic Geodesics for Perceptual Grouping and Domain Meshing, in Computer Vision – ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part II, D. Forsyth, P. Torr, and A. Zisserman, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 129-142.
40.C.-Y. Hu, and C.-H. Lin, Reverse ray tracing for transformation optics, Opt. Express 23, 17622-17637 (2015).
41.S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-Issac, and H. Benali, Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography, International Journal of Biomedical Imaging 2008, 320195 (2008).
42.J.-M. Mirebeau, Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction, SIAM Journal on Numerical Analysis 52, 1573-1599 (2014).
43.M. G. e. al, GNU Scientific Library Reference Manual (3rd Ed.) (2009).
44.D.-H. Kwon, and D. H. Werner, Transformation optical designs for wave collimators, flat lenses and right-angle bends, New Journal of Physics 10, 115023 (2008).
45.H.-C. Chen, J.-Y. Lin, and H.-Y. Chiu, Rectangular illumination using a secondary optics with cylindrical lens for LED street light, Opt. Express 21, 3201-3212 (2013).
46.H. K. Zhao, A fast sweeping method for Eikonal equations, Math Comput 74, 603-627 (2005).
47.R. J. Koshel, Sampling, Optimization, and Tolerancing, in Illumination Engineering(John Wiley & Sons, Inc., 2013), pp. 251-297.
48.I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, Designing light-emitting diode arrays for uniform near-field irradiance, Appl. Opt. 45, 2265-2272 (2006).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top