跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江昌益
研究生(外文):Jiang, Chang-Yi
論文名稱:改良優養化藻類醣化效率提升生質乙醇產量技術之研究
論文名稱(外文):Improvement of saccharification efficiency to increase bioethanol production from eutrophic algae
指導教授:蔡勇斌蔡勇斌引用關係
口試委員:白子易陳谷汎林家驊
口試日期:2017-04-14
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:140
中文關鍵詞:優養化電浮除(石墨)洗滌前處理醣化生質乙醇Pichia stipitis
外文關鍵詞:EutrophicatedElectro-flotation(graphite)Washing pretreatmentSaccharificationBioethanolPichia stipitis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:2
優養化問題已威脅到國人用水的安全,若前端污染源控制成效不彰,則需仰賴後端高效率的處理技術,然而,所產生的廢棄物亦有二次污染的風險,倘若能整合現有技術,收集水體中藻類,並轉製成生質乙醇,不但可解決優養化問題,更使得能源永續發展及達到前瞻發展願景。

過去研究證實電混凝/浮除法是高效率的藻類收集技術,犧牲電極產生的鐵金屬雖有助於增加醣化反應速率及還原糖的產率,但累積於藻體間的金屬氫氧化物,造成單位藻重的碳水化合物含量降低及醣化後生成物對乙醇發酵產生抑制作用等問題。另外優養化水體存在大量雜質,使稀酸醣化過程受到干擾,而增加酸用量,因此,為解決上述問題,本研究採用電浮除(石墨)技術收集優養化水體藻類,以減少金屬離子衍生的問題,並增加洗滌前處理技術,降低雜質的干擾。

研究結果顯示,比較未經前處理技術及經前處理技術的組別,其總還原醣產率分別為0.242 g reducing sugar/g algae與0.288g reducing sugar/g algae,最終透過酵母菌Pichia stipitis (BCRC 21775)於最佳發酵條件下,最高乙醇濃度分別為2.28 g/L與2.86 g/L,最高乙醇產率分別為0.082 g ethanol/g algae與0.101 g ethanol/g algae。

The eutrophication has threatened the safety of drinking water. If the front-end pollution control is not effectiveness, it needs to rely on the highly efficient back-end process technology that generates the waste with risk of secondary pollution. It collects algae in the water if existing technologies are integrated into new process, and converted into bioethanol. Not only can solve the eutrophication, but also make sustainable energy development and achieve forward looking development vision.

In the past, the electro-coagulation/flotation was established to be a highly efficient algal collection technology. The ferrous metal from sacrificial electrode contributes to the increase saccharification reaction rate and the reducing sugar yield but metal hydroxide accumulates in algae. As result of the reduction of carbohydrate content and inhibition of fermentation. In addition, eutrophication of water body contains a large amount of impurities that interferes with dilute acid saccharification process. As result of increasing usage amount of acid. In order to solve the above problems, this study use electro-flotation(graphite) technology to collect eutrophic algae for avoiding a metal ion derived problems and add the washing pretreatment to reduce the interference of impurities.

This result shows that the total reducing sugar yield of pretreated and unpretreated group were respectively 0.242 g reducing sugar/g algae and 0.288 g reducing sugar/g algae. Under optimum ferment conditions by Pichia stipitis (BCRC 21775),the highest ethanol concentration is 2.28 g/L and 2.86 g/L , the highest ethanol yield is 0.082 g ethanol/g algae and 0.101 g ethanol/g algae.

致謝辭 I
論文摘要 II
Abstract III
圖目次 VII
表目次 IX
第一章 前言 1
1–1研究緣起 1
1–2研究目的 1
1–3研究架構 3
第二章 文獻回顧 4
2-1 優養化 4
2-2生質燃料 8
2-2-1 生質燃料的發展 8
2-2-2 生質乙醇 11
2-3 優養化藻體收集方法 18
2-4 優養化藻體稀酸醣化技術 24
2-4-1 稀酸水解 24
2-4-2 酸水解影響因子 29
2-4-3 水解副產物 35
2-4-4 兩階段酸醣化 37
2-5 生質乙醇發酵機制 38
2-6 影響酵母發酵之因子 43
2-7 發酵菌種 52
第三章 材料與方法 58
3-1研究水體 58
3-2實驗設備與儀器 58
3-2-1 實驗設備 58
3-2-2 實驗儀器 62
3-3實驗藥品與試劑 63
3-4 發酵模組 65
3-4-1實驗菌種 65
3-4-2培養基配置 65
3-4-3 菌種活化與保存 65
3-4-4 菌種預培養、發酵基質預處理與接種 66
3-5實驗規劃設計 67
3-5-1 石墨電浮除收集優養化藻類試驗 67
3-5-2 藻類生物質前處理 67
3-5-3 藻類生物質稀酸醣化試驗 69
3-5-4 發酵試驗 72
3-6實驗分析方法 73
3-6-1 水質測定 73
3-6-2 藻類生物質一般成分分析方法 74
3-6-3 還原醣分析 76
3-6-4 水解產物與發酵產物分析 78
3-6-5發酵基質pH值分析 81
3-6-6酵母菌細胞濃度分析 81
第四章 結果與討論 83
4-1研究水體之環境背景分析 83
4-2石墨電浮除法收集優養化藻類之探討 86
4-3洗滌前處理對鹼度之影響 89
4-4優養化藻類生物質製作生質乙醇之潛勢評估 91
4-5優養化藻類生物質最佳稀酸醣化技術條件之試驗 93
4-5-1最佳酸濃度試驗 93
4-5-2最佳液固比試驗 95
4-5-3最佳反應溫度試驗 97
4-5-4最佳反應時間試驗 99
4-6 洗滌前處理對優養化藻類生物質稀酸醣化之影響 101
4-6-1 最佳酸濃度試驗 101
4-6-2最佳液固比試驗 103
4-6-3最佳反應溫度試驗 105
4-6-4最佳反應時間試驗 107
4-7 優養化藻類生物質最佳稀酸醣化結果與兩階段酸醣化可行性之評估 109
4-8優養化藻類生物質水解產物分析 114
4-9發酵生產生質乙醇之試驗 117
第五章 結論與建議 122
5.1結論 122
5.2建議 124
參考文獻 125

表目次
表1.台灣歷年優養化主要水庫數量 5
表2.卡爾森優養化指標(CTSI)之計算方式與程度關係 6
表3.各代生質燃料使用原料與應用範圍 11
表4.藻類分類 13
表5.大型海藻常見的成分組成 15
表6.不同藻類的成分組成 16
表7.電混凝/浮除(ECF)反應式 22
表8.微藻生物質酸水解與酶水解產醣結果比較 25
表9.2006年生質乙醇生產工廠之原料與消耗品(酶、酵母菌與化學品)成本 26
表10.木質纖維素組成與結構 27
表11.不同藻類稀酸醣化之結果 32
表12.稀酸醣化對優養化水體藻類之結果 34
表13.稀酸水解木質纖維素降解過程 36
表14. G. amansii兩階段酸醣化最佳操作參數與結果 38
表15.五碳醣與六碳醣透過微生物代謝轉變乙醇之反應式 43
表16.不同菌種發酵農業廢棄物的乙醇產率 52
表17.不同菌種發酵藻類生物質的乙醇產率 54
表18.本研究所需實驗設備清單 60
表19.本研究所需實驗儀器清單 62
表20.實驗藥品與試劑 63
表21.YPD培養基成分 65
表22.本研究之分析項目及其方法 73
表23.醣類以及水解副產物之設備分析條件 79
表24.研究水體與麒麟潭環境背景資訊 84
表25.電浮除(石墨)與電混凝/浮除收集優養化水體藻類效果之比較 88
表26.藻類生物質於各洗滌次數之殘留鹼度與總去除率 90
表27.優養化藻類生物質成分組成 92
表28.優養化藻類生物質第一階段稀酸醣化結果之質量平衡 111
表29.優養化藻類生物質與純藻生物質稀酸醣化之產醣量 112
表30.優養化藻類生物質主要水解產物 114
表31.藻類生物質之乙醇產率 120

圖目次
圖1.研究架構圖 3
圖2.稀酸水解木質纖維素降解過程(Palmqvist and Hahn-Hagerdal, 2000) 36
圖3.六碳醣代謝途徑(EM途徑)(Ishizaki and Hasumi, 2014) 40
圖4.木糖代謝途徑(五碳醣磷酸途徑)(Ishizaki and Hasumi, 2014) 42
圖5.酵母細胞中可能遭受乙醇影響的細胞部位(D'Amore and Stewart, 1987) 51
圖6.電浮除反應器示意圖 59
圖7.藻類洗滌流程 68
圖8.未洗滌藻類生物質最佳稀酸醣化試驗流程 70
圖9.經洗滌藻類生物質最佳稀酸醣化試驗流程 71
圖10.Pichia stipitis發酵模組 72
圖11.DNS反應式(Miller, 1959) 77
圖12.還原醣分析檢量線 77
圖13.HPLC操作流程架構 78
圖14.酵母菌濃度檢量線 82
圖15.研究水體之藻類分佈 85
圖16.麒麟潭之藻類分佈 85
圖17.石墨電極板以不同電壓收集優養化藻類與不銹鋼電極板的比較 87
圖18.鹼度隨洗滌次數之變化趨勢 90
圖19.藻類生物質於不同硫酸濃度條件下之還原醣產量 94
圖20.藻類生物質於不同硫酸濃度條件下之乙酸產量 94
圖21.藻類生物質於不同液固比條件下之還原醣產量 96
圖22.藻類生物質於不同液固比條件下之乙酸產量 96
圖23.藻類生物質於不同反應溫度條件下之還原醣產量 98
圖24.藻類生物質於不同反應溫度下之乙酸產量 98
圖25.藻類生物質於不同反應時間條件下之還原醣產量 100
圖26.藻類生物質於不同反應時間條件下之乙酸產量 100
圖27.藻類生物質(經洗滌前處理)於不同酸濃度條件下之還原醣產量 102
圖28.藻類生物質(經洗滌前處理)於不同酸濃度條件下之乙酸產量 102
圖29.藻類生物質(經洗滌前處理)於不同液固比條件下之還原醣產量 104
圖30.藻類生物質(經洗滌前處理)於不同液固比條件下之乙酸產量 104
圖31.藻類生物質(經洗滌前處理)於不同反應溫度條件下之還原醣產量 106
圖32.藻類生物質(經洗滌前處理)於不同反應溫度條件下之乙酸產量 106
圖33.藻類生物質(經洗滌前處理)於不同反應時間條件下之還原醣產量 108
圖34.藻類生物質(經洗滌前處理)於不同反應時間條件下之乙酸產量 108
圖35.優養化藻類生物質(未洗滌)各醣類組成比例 116
圖36.優養化藻類生物質(經洗滌)各醣類組成比例 116
圖37.優養化藻類生物質(未洗滌)水解液發酵之醣類與乙醇濃度變化 119
圖38.優養化藻類生物質(經洗滌)水解液發酵之醣類與乙醇濃度變化 119

一、中文部分
王玉高、趙燁、貢士瑞、許文娟、盛晨,纖維素水解的研究進展,化學時刊,第23卷,第5期,第70-73頁,2009
王美苓、周政輝、晏文潔,食品分析實驗,2013
李青樺,舞菇多醣體水解之分析研究,南臺科技大學化學工程研究所碩士學位論,2004
李毅慧,木糖發酵菌株之發酵特性與機制討論,國立新竹教育大學應用科學系碩士論文,2013
林威志,優養化水體藻類發酵產製生質酒精技術之研發,暨南國際大學土木工程學系碩士論文,2015
邱建豪,水解優養化藻類供製生質能之技術研發,暨南國際大學土木工程學系碩士論文,2014
張基隆、胡祐甄、黃姿菁、鄭筱翎、謝寶萱,生物化學,2015
陳文恆、郭家倫、黃文松、王嘉寶,纖維酒精技術之發展,農業生技產業季刊,第九期,第62-69頁,2007
陳蕙如、潘思樺、王振宇、蔡演忠、林聖傑,生物化學實驗,2007
黃致遠,以電混凝/浮除法收集優養化水體藻類供製生質能之可行性評估,暨南國際大學土木工程學系碩士論文,2013
黃瓊華、吳如雯、賴素媛,新編生物化學實驗,2010
楊美桂,普通微生物學實驗,2015
機械工程手冊/電機工程手冊編輯委員會,機械工程手冊-鋼材料,2009

二、英文部分
Abbi, M., Kuhad, R.C., Singh, A. Bioconversion of pentoses sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): fermentation behavior. Process Biochemistry, 31, 555-560, 1996
Agbogbo, F.K., Coward-Kelly, G., Torry-Smith, M., Wenger, K.S. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry, 41, 2333-2336, 2006
Agbogbo, F.K., Wenger, K.S. Production of ethanol from corn stover hemicellulose hydrolysate using Pichia stipitis. Journal of Industrial Microbiology and Biotechnology, 34, 723-727, 2007
Almeida, J.R.M., Modig, T., Petersson, A., Hähn‐Hägerdal, B., Lidén, G., Gorwa‐Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology, 82, 340-349, 2007
Arslan, Y., Eken-Saracoglu, N. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia stipitis to ethanol. Bioresource Technology, 101, 8664-8670, 2010
Baek, S.W., Kim, J.S., Park, Y.K., Kim, Y.S., Oh, K.K. The effect of sugar decomposed on the ethanol fermentation and decomposition reactions of sugars. Biotechnology and Bioprocess Engineering, 13, 332-341, 2008
Bai, F.W., Anderson, W.A., Moo-Young, M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89-105, 2008
Balat, M., Balat, H., Oz, C. Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551-573, 2008
Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., García-Cubero, M.T. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource Technology, 102, 10868-10874, 2011
Bellissimi, E., Van Dijken, J.P., Pronk, J.T., Van Maris, A.J. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose‐isomerase‐based Saccharomyces cerevisiae strain. FEMS Yeast Research, 9, 358-364, 2009
Bhutto, A.W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A.A., Yu, S.K.G. Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122 , 1-65, 2017
Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., Pandey, A. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 37, 109-116, 2012
Borines, M.G., de Leon, R.L., Cuello, J.L. Bioethanol production from the macroalgae Sargassum spp.. Bioresource Technology, 138, 22-29, 2013
Candra, K.P., Sarwono, Sarina. Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water. Journal of Coastal Development,15, 45-50, 2011
Casey, E., Sedlak, M., Ho, N.W.Y., Mosier, N.S. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Research, 10, 385-393, 2010
Castro, Y.A., Ellis, J.T., Miller, C.D., Sims, R.C. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy, 140, 14-19, 2015
Chandel, A.K., Kapoor, R.K., Kuhad, R.C. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98, 1947-1950, 2007
Chen, S.T., Tsai, Y.P., Ciou, J.H., Huang, Z.Y., Shiu, W.C.L.H. Study on saccharification techniques of alga waste harvested from a eutrophic water body for the transformation of ethanol. Renewable Energy, 101, 311-315, 2017
Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M. Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38, 105-109, 2008
Chng, L.M., Lee, K.T., Chan, D.J.C. Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energy Conversion and Management, 141, 410-419, 2017
Cho, Y.K., Kim, H., Kim, S.K. Bioethanol production from brown seaweed, Undaria pinnatifida using NaCl acclimated yeast. Bioprocess and Biosystems Engineering, 36, 713-719, 2013
Choi, S.P., Nguyen, M.T., Sim, S.J. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology, 101, pp.5330-5336, 2010
Chu, B.C.H., Lee, H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 25, 425-441,2007
Converti, A., Borghi, M.D. Inhibition of the fermentation of oak hemicelluloses acid-hydrolysate by minor sugars. Journal of Biotechnology, 64, 211-218, 1998
Crossman, D.J., Clements, K.D., Cooper, G.J.S. Determination of protein for studies of marine herbivory: a comparison of methods. Journal of Experimental Marine Biology and Ecology, 244, 45-65, 2000
D'Amore, T., Stewart, G.G. Ethanol tolerance of yeast. Enzyme and Microbial Technology, 9, 322-330, 1987
Daroch, M., Geng, S., Wang, G. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 102, 1371-1381, 2013
De Marañón, I.M., Chaudanson, N., Joly, N., Gervais, P. Slow heat rate increases yeast thermotolerance by maintaining plasma membrane integrity. Biotechnology and Bioengineering, 65, 176-181, 1999
Demirbas, M.F., Balat, M., Balat, H. Biowastes-to-biofuels. Energy Conversion and Management, 52, 1815-1828, 2011
Devendra, L.P., Kiran Kumar, M., Pandey, A. Evaluation of hydrotropic pretreatment on lignocellulosic biomass. Bioresource Technology, 213, 350-358, 2016
Does, A.L., Bisson, L.F. Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Applied and Environmental Microbiology, 55, 159-164, 1989
Eken-Saraçoğlu, N., Arslan, Y. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnology Letters, 22, 855-858, 2000
Eliasson, A., Christensson, C., Wahlbom, C.F., Hahn-Hägerdal, B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and Environmental Microbiology, 66, 3381-3386, 2000
Fakhrudin, J., Setyaningsih, D., Rahayuningsih, M. Bioethanol production from seaweed Eucheuma cottonii by neutralization and detoxification of acidic catalyzed hydrolysate. International Journal of Environmental Science and Developement, 5, 455-458, 2014
Fasahati, P., Woo, H.C., Liu, J.J. Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Applied Energy, 139, 175-187, 2015
Fenske, J.J., Griffin, D.A., Penner, M.H. Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. Jouranal and Industrial Microbiology and Biotechnology, 20, 364-368, 1998
Fiaux, J., Çakar, Z.P., Sonderegger, M., Wüthrich, K., Szyperski, T., Sauer, U. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryotic cell, 2, 170-180, 2003
Gao, K., Orr, V., Rehmann, L. Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction. Bioresource Technology, 206, 77-85, 2016
Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., Du, M. Electro-coagulation–flotation process for algae removal. Journal of Hazardous Materials, 177, 336-343, 2010
Gupta, R., Sharma, K.K., Kuhad, R.C. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol using Saccharomyces cerevisiae and Pichia stipitis NCIM 3498. Bioresource Technology,100, 1214-1220, 2009
Hahn-Hägerdal, B., Jeppsson, H., Skoog, K., Prior, B.A. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme and Microbial Technology, 16, 933-943, 1994
Hakizimana, J.N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., Naja, J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21, 2017
Harun, R., Danquah, M.K. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal, 168, 1079-1084, 2011
Helle, S.S., Murray, A., Lam, J., Cameron, D.R., Duff, S.J.B. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresource Technology, 92, 163-171, 2004
Ho, S.H., Huang, S.W., Chen, C.Y., Hasunuma, T., Kondo, A., Chang, J.S. Bioethanol production using carbohydrate rich microalgae biomass as feedstock. Bioresource Technology, 135, 191-198, 2013a
Ho, S.H., Li, P.J., Liu, C.C., Chang, J.S. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresource Technology, 145, 142-149, 2013b
Holt, P.K., Barton, G.W., Wark, M., Mitchell, C.A. A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211, 233-248, 2002
Holt, P.K., Barton, G.W., Wark, M., Mitchell, C.A. The future for electrocoagulation as a localized water treatment technology. Chemosphere, 59, 355-367, 2005
Hou, X. Anaerobic xylose fermentation by Spathaspora passalidarum. Applied Microbiology and Biotechnology, 94, 205-214, 2012
Huang, C.F., Lin, T.H., Guo, G.L., Hwang, W.S. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology, 100, 3914-3920, 2009
Ishizaki, H., Hasumi, K. Ethanol Production from Biomass. Research Approaches to Sustainable Biomass Systems, 243-258, 2014
Jambo, S.A., Abdulla, R., S.H.M., Azhar, Marbawi, H., Gansau, J.A., Ravindra, P. A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756-769, 2016
Jeong, G.T., Kim, S.K., Park, D.H. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresource Technology, 181, 1-6, 2015
Jeong, T.S., Kim, Y.S., Oh, K.K. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresource Technology, 102, 10529-10534, 2011
Jia, S., Li, S., Wu, G. Alcohol craft. Chemical Industry Press, 2005
Jung, Y.H., Kim, K.H. Acidic Pretreatment. Pretreatment of Biomass, 27-50, 2015
Kamzon, M.A., Abderafi, S., Bounahmidi, T. Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. International Journal of Hydrogen Energy, 41, 10529-10534, 2016
Kanaan, A., Mazloum, A., Sevostianov, I. On the connections between plasticity parameters and electrical conductivities for austenitic, ferritic, and semi-austenitic stainless steels. International Journal of Engineering Science, 105, 28-37, 2016
Karimi, K., Kheradmandinia, S., Taherzadeh, M.J. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 30, 247-253, 2006
Katiyar, R., Gurjar, B.R., Biswas, S., Pruthi, V., Kumar, N., Kumar, P. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews,72, 1083-1093, 2017
Khambhaty, Y., Mody, K., Gandhi, M.R., Thampy, S., Maiti, P., Brahmbhatt, H., Eswaran, K., Ghosh, P.K. Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology, 103, 180-185, 2012
Kilian, S.G., Van Uden, N. Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis. Applied Microbiology and Biotechnology, 17. 545-548, 1988
Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C.W., Park, M.S., Yang, J.W. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 31, 862-876, 2013
Kim, K.H., Choi, I.S., Kim, H.M., Wi, S.G., Bae, H.J. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresource Technology, 153, 47-54, 2014
Kim, N.J., Li, H., Jung, K., Chang, H.N., Lee, P.C. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology, 102, 7466-7469, 2011
Koivistoinen, O.M., Arvas, M., Headman, J.R., Andberg, M., Penttilä, M., Jeffries, T.W., Richard, P. Characterisation of the gene cluster for L-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis. Gene, 492, 177-185, 2012
Kuhad, R., Gupta, R., Khasa, Y.P., Singh, A. Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresource Technology, 101, 8348-8354, 2010
Kuhad, R.C., Gupta, R., Khasa, Y.P., Singh, A., Zhang, Y.H.P. Bioethanol production from pentose sugars: Current status and future prospects. Renewable and Sustainable Energy Reviews, 15, 4950-4962, 2011
Kumar, S., Gupta, R., Kumar, G., Sahoo, D., Kuhad, R.C. Bioethanol production from Gracilaria verrucosa , a red alga, in a biorefinery approach. Bioresource Technology, 135, 150-156, 2013
Lafon-Lafourcade, S., Geneix, C., Ribéreau-Gayon, P. Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Applied and Environmental Microbiology, 47, 1246-1249, 1984
Lam, M.K., Lee, K.T. Bioethanol Production from Microalgae. Handbook of Marine Microalgae, 197-208, 2015
Laplace, J.M., Delgenes, J.P., Moletta, R., Navarro, J.M. Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochemistry, 28, 519-525, 1993
Laurens, L.M.L., Dempster, T.A., Jones, H.D.T., Wolfrum, E.J., Wychen, S.V., McAllister, J.S.P., Rencenberger, M., Parchert, K.J., Gloe, L.M. Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries. Analytical Chemistry, 84, 1879-1887, 2012
Lawford, H.G., Rousseau, J.D. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media. Applied Biochemistry and Biotechnology, 70, 161-172, 1998
Liu, R., Shen, F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource technology, 99, 847-854, 2008
Lone, Y., Koiri, R.K., Bhide, M. An overview of the toxic effect of potential human carcinogen Microcystin-LR on testis. Toxicology Reports, 2 , 289-296, 2015
Martinez, A., Rodriguez, M.E., York, S.W., Preston, J.F., Ingram, L.O. Effects of Ca(OH)2 treatments (overliming) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering, 69, 526-536, 2000
McMeekin, T.A., Olley, J., Ratkowsky, D.A., Ross, T. Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 73, 395-407, 2002
Meinita, M.D.N., Kang, J.Y., Jeong, G.T., Koo, H.M., Park, S.M., Hong, Y.K. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). Journal of Applied Phycology, 24, 857-862, 2011
Meyrial, V., Delgenes, J.P., Romieu, C., Moletta, R., Gounot, A.M. Ethanol tolerance and activity of plasma membrane ATPase in Pichia stipitis grown on D-xylose or on D-glucose. Enzyme and Microbial Technology, 17, 935-940, 1995
Milano, J, Ong, H.C., Masjuki, H.J., Chong, W.T., Lam, M.K., Loh, P.K., Vellayan, V. Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180-197, 2016
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428, 1959
Miller, G.L., Blum, R., Glennon, W.E., Burton, A.L. Measurement of carboxymethylcellulase activity. Analytical Biochemistry, 1, 127-132, 1960
Miranda, J.R., Passarinho, P.C., Gouveia, L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342-348, 2012
Moniruzzaman, M. Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World Journal of Microbiology and Technology, 11, 646-648, 1995
Mussatto, S.I., Machado, E.M.S., Carneiro, L.M., Teixeira, J.A. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 92, 763-768, 2012
Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H., Sim, S.J. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Journal of Microbiology and Biotechnology, 19, 161-166, 2009
Nguyen, N.H., Suh, S.O., Marshall, C.J., Blackwell, M. Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research, 110, 1232-1241, 2006
Nigam, J.N. Development of xylose‐fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. Journal of Applied Microbiology, 90, 208-215, 2001a
Nigam, J.N. Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. Journal of Industrial Microbiology and Biotechnology, 26, 145-150, 2001b
Nigam, J.N. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. Journal of Biotechnology, 87, 17-27, 2001c
Noraini, M.Y., Ong, H.C., Badrul, M.J., Chong, W.T. A review on potential enzymatic reaction for biofuel production from algae. Renewable and Sustainable Energy Reviews, 39, 24-34, 2014
Palmqvist, E., Hahn-Hagerdal, B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25-33, 2000
Park, J.H., Hong, J.Y., Jang, H.C., Oh, S.G., Kim, S.H., Yoon, J.J., Kim, Y.J. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83-88, 2012
Pereira, F.B., Guimarães, P.M.R., Teixeira, J.A., Domingues, L. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 101, 7856-7863, 2010
Pereira, S.R., Portugal-Nunes, D.J., Evtuguin, D.V., Serafim, L.S., Xavier, A.M.R.B. Advances in ethanol production from hardwood spent sulphite liquors. Process Biochemistry, 48, 272-282, 2013
Rahmani, A.R., Nematollahi, D. Godini,K., Azarian, G. Continuous thickening of activated sludge by electro-flotation. Separation and Purification Technology, 107, 166-171, 2013
Rizzi, M., Klein, C., Schultze, C., Bui-Thanh, N.A., Dellweg, H. Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen limited growth and fermentation with the yeast Pichia stipitis with xylose as a carbon source. Biotechnology Bioengineering, 34, 509-514, 1989
Sakamoto, T., Hasunuma, T., Hori, Y., Yamada, R., Kondo, A. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Journal of Biotechnology, 158, 203-210, 2012
Sakihama, Y., Hasunuma, T., Kondo, A. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 119, 297-302, 2015
Saltukoglu, A., Slaughter, J.C. The effect of magnesium and calcium on yeast growth. Journal of the Institute of Brewing, 89, 81-83, 1983
Seghetta, M.,ψstergard, H., Bastianoni, S. Energy analysis of using macroalgae from eutrophic a bioethanol feedstock. Ecological Modelling, 288, 25-37, 2014
Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36, 638-670, 2011
Silva, J.P.A., Mussatto, S.I., Roberto, I.C., Teixeira, J.A. Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renewable Energy, 37, 259-265, 2012
Singh, J., Gu, S. Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14, 2596-2610, 2010
Singh, R., Shukla, A., Tiwari, S., Srivastava, M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713-728, 2014
Skoog, K., Hahn-Hägerdal, B. Effect of oxygenation on xylose fermentation by Pichia stipitis. Applied and Environmental Microbiology, 56, 3389-3394, 1990
Slininger, P.J., Bothast, R.J., Ladisch, M.R., Okos, M.R. Optimum pH and temperature conditions for xylose fermentation by Pichia stipitis. Biotechnology and Bioengineering, 35, 727-731, 1990
Smith V.H. Eutrophication. Encyclopedia of Inland Waters, 3, 61-73, 2009
Soccol, C.R., Faraco, V., Karp, S., Vandenberghe, L.P.S., Thomaz-Soccol, V., Woiciechowski, A., Pandey, A. Lignocellulosic Bioethanol: Current Status and Future Perspectives. Biofuels, 101-122, 2011
Stoutenburg, R.M., Perrotta, J.A., Amidon, T.E., Nakas, J.P. Ethanol production from a membrane purified hemicellulosic hydrolysate derived from sugar maple by Pichia stipitis NRRL R-7124. Bioresources, 3, 1349-1358, 2008
Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach.Renewable and Sustainable Energy Reviews, 55, 909 -941, 2016
Sun, S., Sun, S., Cao, X., Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49-58, 2016
Sun, Z.Y., Tang, Y.Q., Iwanaga, T., Sho, T., Kida, K. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresource Technology, 102, 10929-10935, 2011
Telli-Okur, M., Eken-Saraçoğlu, N. Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresource Technology, 99, 2162-2169, 2008
Thangavelu, S.K., Ahmed, A.S., Ani, F.N. Review on bioethanol as alternative fuel for spark ignition engines. Renewable and Sustainable Energy Reviews, 56, 820-835, 2016
Walker, G.M. Metals in yeast fermentation processes. Advances in Applied Microbiology, 54, 197-229, 2004
Wana, C., Alam, M.A., Zhao, X.Q., Zhang, X.Y., Guo, S.L., Ho, S.H., Chang, J.S., Bai, F.W. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 184, 251-257, 2015
Williams, J.P., Merrilees, P.A. The Removal of Water and Nonlipid Contaminants from Lipid Extracts. Lipids, 5, 367-370, 1970
Xia, A., Jacob, A., Tabassum, M.R., Herrmann, C., Murphy, J.D. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresource Technology , 205, 118-125, 2016
Xu, J. Microwave Pretreatment. Pretreatment of Biomass , 157-172, 2015
Yoo, G., Park, M.S., Yang, J.W. Chemical Pretreatment of Algal Biomass. Pretreatment of Biomass, 227-258, 2015
Yoon, S.Y., Han, S.H., Shin, S.J. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy, 77, 19-24, 2014
Zhang, M., Wang, F., Su, R., Qi, W., He, Z. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 101, 4959-4964, 2010
Zhang, T.Y., Hu, H.Y., Wu, Y.H., Zhuang, L.L., Xu, X.Q., Wang, X.X., Dao, G.H. Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renewable and Sustainable Energy Reviews, 60, 1602-1614, 2016
Zhao, L., Zhang, X., Tan, T. Influence of various glucose/xylose mixtures on ethanol by Pachysolen tannophilus. Biomass and Bioenergy, 32, 1156-1161, 2008
Zhou, W., Gao, L., Cheng, W., Chen, L., Wang, J., Wang, H., Wei Zhang, Liu, T. Electro-flotation of Chlorella sp. assisted with flocculation by chitosan. Algal Research,18, 7-14, 2016
Zhu, J.J., Yong, Q., Xu, Y., Chen, S.X., Yu, S.Y. Adaptation fermentation of Pichia stipitis and combination detoxification on steam exploded lignocellulosic prehydrolyzate. Natural Science, 1, 47-54, 2009
Zhu, Z., Rezende, C.A., Simister, R., McQueen-Mason, S.J., Macquarrie, D.J., Polikarpov, I., Gomez, L.D. Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass and Bioenergy, 93, 269-278, 2016

三、網路部分
行政院環境保護署,全國環境水質監測資訊網,http://wq.epa.gov.tw/Code/?Languages=
行政院環境保護署,環境資源資料庫,http://erdb.epa.gov.tw/ERDBIndex.aspx

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top