跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文宏
研究生(外文):CHEN, WEN-HONG
論文名稱:應用於無線區域網路之圓柱形介質共振天線
論文名稱(外文):Cylindrical Dielectric Resonator Antenna for Wireless Local Area Networks
指導教授:翁偉中
指導教授(外文):WENG, WEI-CHUNG
口試委員:林佑昇王曙民
口試委員(外文):LIN, YO-SHENGWANG, SHU-MING
口試日期:2017-06-12
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:48
中文關鍵詞:無線區域網路槽孔饋入介質共振天線共振腔微帶線饋入
外文關鍵詞:wireless local area networksslot feddielectric resonator antennaresonatormicrostrip line fed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
介質共振器天線由於本身具有相當高的介電常數,致使其在同樣的操作頻率下,體積可以比微帶天線更加小型化,加上介質共振天線擁有共振腔的特性,讓天線本身在體積縮小的情況下,依舊保有一定的頻寬與增益,這也是介質共振天線即使在需要額外的共振器材料成本,卻依然保有一席之地的原因。
本研究提出可應用於無線區域網路之圓柱介質共振天線,介質共振器為參雜部分濃度氧化鋁的陶瓷材料,其介電常數約為 9.8,所設計之介質共振天線之頻率操作能涵蓋無線區域網路的高頻段,如 5.15 GHz 至 5.35 GHz 以及 5.725 GHz 至 5.825 GHz 等範圍。介質共振天線以微帶線饋入並藉由一長形槽孔來激發圓柱共振器的模態,槽孔本身並不做為輻射的元件。經過計算,共振器激發模態為 HE11。最終,本研究所提出的介質共振天線之阻抗頻寬為 19.5% (4.86 - 5.91 GHz),最大增益為 6.49 dBi,輻射場型為正 z 方向,所設計之天線能夠涵蓋及應用於 WLAN 頻段。
Dielectric resonator antenna with itself has quite high dielectric constant. Thus cause under the same operating frequency. The volume can be better than a microstrip antenna miniaturization. Coupled with dielectric resonator antenna has the characteristics of the resonant cavity. Let the antenna itself under the condition of the smaller, still retain a certain amount of bandwidth and gain. It also the reason why still remain, even if in need of additional cost.
This study proposed cylindrical dielectric resonator antenna can be applied to wireless LAN. The material of the dielectric resonator is a kind of ceramics that mix up part of the concentration of alumina. Its dielectric constant is about 9.8. The frequency operation band of the proposed design can cover the high band of wireless local area networks, such as 5.15 GHz to 5.35 GHz and 5.725 GHz to 5.825 GHz range. This Dielectric resonator antenna fed by microstrip line and through a long slot to excite cylindrical resonator modes, and slot itself is not as a radiation element. After calculation, the resonator for HE11 mode.In the end, The impedance bandwidth of proposed antenna is 19.5% (4.86 to 5.91 GHz) and A peak gain of 6.49 dBi are obtained. Antenna radiation pattern traveling in the positive z direction. This design of antenna can cover and applied to WLAN band.
目次
致謝辭 ....................................................................................................................................i
摘要 ...................................................................................................................................... ii
Abstract ............................................................................................................................... iii
目次 ....................................................................................................................................... v
表目次 ................................................................................................................................ vii
圖目次 ............................................................................................................................... viii
第一章 序論 .......................................................................................................................... 1
1.1 概述 ........................................................................................................................ 1
1.2 研究背景與動機 .................................................................................................... 1
1.3 文獻回顧 ................................................................................................................ 5
1.3.1 介質共振器 .................................................................................................. 5
1.3.2 饋入機制 ...................................................................................................... 6
1.3.3 介質共振器材料 .......................................................................................... 9
1.4 論文架構 .............................................................................................................. 10
第二章 理論分析 ................................................................................................................ 11
2.1 微波介質共振原理 .............................................................................................. 11
2.2 相對介電常數(relative permittivity, er ) ..................................................... 14
2.3 品質因素(quality factor, Q) ............................................................................. 15
2.4 圓柱介質共振器基本共振模態 .......................................................................... 16
2.5 圓柱介質共振器內部電磁場分布與遠場輻射 .................................................. 23
第三章 圓柱形介質共振天線實驗結果與分析 .............................................................. 25
3.1 天線概述 .............................................................................................................. 25
3.2 天線結構 .............................................................................................................. 25
3.3 天線設計步驟 ...................................................................................................... 28
3.4 天線模擬與量測結果對照 .................................................................................. 30
3.5 天線的輻射場型 .................................................................................................. 31
3.6 天線增益 .............................................................................................................. 35
3.7 介質內部電磁場分佈 .......................................................................................... 36
3.8 天線參數分析 ...................................................................................................... 39
第四章 結論 ...................................................................................................................... 44
參考文獻 .............................................................................................................................. 46


表目次
表1.1 WLAN 頻段表 .......................................................................................................... 3
表1.2 微波電路用途介質材料表 [2] ................................................................................ 4
表1.3 介電係數 8 至 12 之常見材料 ............................................................................. 9
表2.1 2
np X - TE mode 之貝索函數零點數值表 .............................................................. 17
表2.2 2 'np X - TM mode 之貝索函數零點數值表 ............................................................ 17
表3.1 介質共振天線結構之設計參數 ............................................................................. 26
表4.1 文獻比較表格 ......................................................................................................... 45

圖目次
圖1.1 介質共振天線發表文獻統計 [1] ............................................................................ 3
圖1.2 常見共振器結構 [3-5] (a)矩形, (b)半圓形, (c)圓柱形 ....................................... 5
圖1.3 常見饋入結構 [9] (a)同軸饋入, (b)槽孔饋入, (c)微帶線饋入, (d)共平面波導饋入, (e)介質映像引導饋入 ..................................................................... 7
圖1.4 採用結合不同饋入槽孔結構 [10] .......................................................................... 8
圖1.5 結合槽孔與空腔結構 [11] ...................................................................................... 8
圖1.6 NMP 饋入結構 [12]............................................................................................... 8
圖1.7 堆疊結構之階梯式介質共振器 [13] ...................................................................... 9
圖1.8 堆疊結構之半圓形介質共振器 [15] .................................................................... 10
圖2.1 電磁波入射介質示意圖 ......................................................................................... 13
圖2.2 介質內電磁波共振示意圖 ..................................................................................... 13
圖2.3 TE01 mode 波數與共振器體積比值及介電常數關係圖 ...................................... 19
圖2.4 TE01 mode 品質因素與共振器體積比值及介電常數關係圖 ............................... 19
圖2.5 TE011 mode 波數與共振器體積比值及介電常數關係圖 ..................................... 20
圖2.6 TE011 mode 品質因素與共振器體積比值及介電常數關係圖 ............................. 20
圖2.7 HE11 mode 波數與共振器體積比值及介電常數關係圖 ...................................... 21
圖2.8 HE11 mode 品質因素與共振器體積比值及介電常數關係圖 .............................. 21
圖2.9 TM01 mode 波數與共振器體積比值及介電常數關係圖 ..................................... 22
圖2.10 TM01 mode 品質因素與共振器體積比值及介電常數關係圖 ........................... 22
圖2.11 TM01 mode內部電磁場分布 [9] .......................................................................... 23
圖2.12 HE11 mode內部電磁場分布 [9] .......................................................................... 23
圖2.13 TE01 mode內部電磁場分布 [9] ........................................................................... 23
圖2.14 HE12 mode內部電磁場分布 [9] .......................................................................... 23
圖2.15 各共振模態的遠場輻射 [18] .............................................................................. 24
圖3.1 介質共振天線結構圖 ............................................................................................. 26
圖3.2 天線實作圖 (正面) ................................................................................................ 27
圖3.3天線實作圖 (側面) ................................................................................................. 27
圖3.4 天線實作圖 (背面) ................................................................................................ 27
圖3.5 接地面饋入尺寸示意圖 (實線為正面,虛線為背面) ........................................ 29
圖3.6 有共振器與無共振器之反射係數 ......................................................................... 30
圖3.7 介質共振天線於5.2 GHz 之模擬與量測場型 (a) E-total三維模擬場型, (b) E-total二維場型, (c) x-z 平面之電場分量, (d) y-z平面之電場分量 ......... 32
圖3.8 介質共振天線於5.5 GHz 之模擬與量測場型 (a) E-total三維模擬場型, (b) E-total二維場型, (c) x-z 平面之電場分量, (d) y-z平面之電場分量 ......... 33
圖3.9 介質共振天線於5.8 GHz 之模擬與量測場型 (a) E-total三維模擬場型, (b) E-total二維場型, (c) x-z 平面之電場分量, (d) y-z平面之電場分量 ......... 34
圖3.10介質共振天線模擬之增益 .................................................................................... 35
圖3.11 HE11 mode內部電磁場分布圖 [9] ...................................................................... 36
圖3.12 介質共振器內部電場方向圖 (a) 5.2 GHz, (b) 5.5 GHz, (c) 5.8 GHz .......... 37
圖3.13 介質共振器內部磁場方向圖 (a) 5.2 GHz, (b) 5.5 GHz, (c) 5.8 GHz .......... 38
圖3.14 微調天線參數 s 的 (a) 反射係數圖, (b) 虛部阻抗圖, (c) 實部阻抗圖 ........ 40
圖3.15 微調天線參數 ls 的 (a) 反射係數圖, (b) 虛部阻抗圖, (c) 實部阻抗圖 ....... 41
圖3.16 微調天線參數 ws 的 (a) 反射係數圖, (b) 虛部阻抗圖, (c) 實部阻抗圖 ..... 42
圖3.17 微調天線參數 T 的 (a) 反射係數圖, (b) 虛部阻抗圖, (c) 實部阻抗圖 ....... 43

[1] A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag., vol. 52, no. 5, pp. 91–116, Oct. 2010.

[2] K. M. Luk and K. W. Leung (eds.), Dielectric Resonator Antennas, England, Research Studies Press, 2003.

[3] S. A. Long, M. W. McAllister, and L. C. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Transactions on Antennas and Propagation, vol. 31, pp. 406–412, May. 1983.

[4] M. McAllister, S. A. Long, and G. L. Conway, “Rectangular dielectric resonator antenna,” Electron. Lett., vol. 19, pp. 219–220, Mar. 1983.

[5] M. W. McAllister and S. A. Long, “Resonant hemispherical dielectric antenna,” Electron. Lett., vol. 20, pp. 657–659, Aug. 1984.

[6] A. A. Kishk, A. W. Glisson, and D. Kajfez, “Computed Resonant Frequency and Far Fields of Isolated Dielectric Discs,” in Proc. IEEE AP-S Int. Symp., Ann Arbor, MI, pp. 408–411, June. 1993.

[7] R. DeSmedt, “Correction Due to a Finite Permittivity for a Ring Resonator in Free space,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 1288–1293, Oct. 1984.

[8] M. Tsuji, H. Shigesawa, and K. Takiyama, “Analytical and Experimental Investigations on Several Resonant Modes in Open Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 628-632, June. 1984.

[9] Antenna Engineering Handbook, 4th ed., J. L. Volakis., McGraw-Hill Companies, Inc., pp. 17-3, 2007.

[10] D. Guha, P. Gupta, and C. Kumar, “Dual Band Cylindrical Dielectric Resonator Antenna Employing HEM11δ and HEM12δ Modes Excited by New Composite Aperture,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 433–438, Jan. 2015.

[11] D. Guha, A. Banerjee, C. Kumar, and Y. M. M. Antar, “New technique to excite higher-order radiating mode in a cylindrical dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 15–18, Jan. 2014.

[12] D. Guha, A. Banerjee, C. Kumar, and Y. M. M. Antar, “Higher order mode excitation for high-gain broadside radiation from cylindrical dielectric resonator antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 71–77, Jan. 2012.

[13] S. Fakhte, H. Oraizi, and R. Karimian, “A novel low-cost circularly polarized rotated stacked dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 722–725, Apr. 2014.

[14] A. Sabouni and A. A. Kishk, “Dual-polarized, broadside, thin dielectric resonator antenna for microwave imaging,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 380–383, March. 2013.

[15] Mukherjee. B. Patel, P.MUKHERJEE.J, “Hemispherical Dielectric Resonator Antenna Based on Apollonian Gasket of Circles—A Fractal Approach, ” IEEE Trans. Antennas Propag.,vol. 62, no. 1, pp. 40, 47, Jan. 2014.

[16] R. Kumar and R. K. Chaudhary, “A Wideband Circularly Polarized Cubic Dielectric Resonator Antenna Excited with Modified Microstrip Feed,” IEEE Antennas Wireless Propag. Lett., vol. 55, pp. 1285-1288, Dec. 2016.

[17] Y. M. Pan, K. W. Leung, and K. Lu, “Compact quasi-isotropic dielectric resonator antenna with small ground plane,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 577–585, Feb. 2014.

[18] R. K. Mongia and P. Bhartia, “Dielectric resonator antennas—A review and generaldesign relations for resonant frequency and bandwidth,” Int. J. Microw. Millimeter-Wave Comput.-Aided Eng., vol. 4, no. 3, pp. 230–247, 1994.

[19] Dielectric Resonator Antennas Handbook, A. Petosa, ARTECH HOUSE, Inc., pp. 61 - 62, 2007.

[20] L. Y. Feng , Y. Sun and K. W. Leung , “Gain Enhanced Omnidirectional Cylindrical Ring Dielectric Resonator Antenna,” to appear, Int. Symp. Antennas Prop., 2016.

[21] L. Y. Feng and K. W. Leung, “Bidirectional Dielectric Resonator Antenna, ” in 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015.

[22] S. Mudavath, R. Kumari, and S. Behera, “A compact CPW fed stacked cylindrical dielectric resonator antenna for WLAN applications,” in Proc. 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), 2012, pp. 818–820, 2012.

[23] A. A. Baba, M. A. Zakariya, Z. Baharudin, M. H. Md Khir, S. M. Ali and J. J. Adz., “Cylindrical Dielectric Resonator Antenna with TE11 Mode,” 2013 IEEE International RF and Microwave Conference (RFM), pp. 1-5, 2013.

[24] Marius Gabriel Ţurcan, Mădălina-Varvara Moni and Gabriel Banciu, “Studies of Aperture-Coupled Rectangular Dielectric Resonator Antenna Arrays, ” Communications (COMM), 2016 11th International Conference, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top