跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳筑鈞
研究生(外文):Chen, Chu-Chun
論文名稱:表面波震測施測程序之優化與標準化
論文名稱(外文):Standardization and Optimization of MASW Testing
指導教授:林志平林志平引用關係
口試委員:林俊宏馮正一林炳森葛宇甯
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:多頻道表面波震測法標準化施測程序
外文關鍵詞:Multi-channel Analysis of Surface Wave Method(MASW)Optimization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
近幾年來表面波震測法應用於探測淺層地層剪力波速技術研究日 趨成熟。此量測技術屬非破壞性檢測,因無需開孔破壞地表土層故可快 速且經濟地量測地下土層之剪力波速剖面,備受工程界之重視與應用。 波譜分析表面波震測(SASW)與多頻道表面波震測(MASW)為目前較廣 為使用之表面波震測分析技術,其牽涉到頻散曲線分析方法的基本差異, 兩者之優劣比較常可見於文獻;另方面,表面波震測測線現場施測之幾 何配置與震源使用對於頻散曲線之品質與頻寬影響甚大,相關參數之使 用莫衷一是,實務上通常需要於現場進行多次測試方能取得最佳之配置。 表面波震測技術在前述現場施作參數設定與頻散曲線分析的多樣性容 易造成工程師應用上之困擾,進行影響其推廣與應用。為改善此現象, 本研究以獲取最大頻寬頻散曲線為目標,針對表面波震測之現場施作參 數的設定與頻散曲線分析方法提出標準化施作與分析流程。,首先,本 研究探討個別施測參數(如震源種類、近站支距、受波器間距)對於頻散 分析之影響,並以 Pseudo-section 的概念,於現場收錄不同震源與不同 近站支距之訊號,而後在頻散曲線分析過程中加入各頻率下最佳空間範 圍之選取,將近場效應與遠場效應對於震測資料的訊號影響程度降至最低,再以 Pseudo-section 的概念接合資料產生擁有各近站支距之訊號, 有效利用不同震源所產生之頻段,且降低施測參數互制對訊號分析的影響,獲得最佳頻寬之頻散曲線,在此應用下,達到將表面波震測之現地施作與頻散曲線分析流程標準化的目的。如此,現場蒐集震測資料時不 因施測者不同而有對現地施測參數測試結果不同的看法,造成施測成果 上的差異,以利其未來工程應用之推廣。
The surface wave method utilized in shear wave velocity profiling of the underground becomes more mature than ever in recent years. Due to its non-intrusive feature and convenient operations, it is now widely used in site investigation and earthquake engineering. Among all the seismic methods, surface wave testing is easiest to perform since surface wave contains most of the energy in the seismograms. Being able to sample a very large volume, surface wave method is suitable for larger-scale site investigation. The data reduction method for dispersion relation in a surface wave testing is conventionally asociated with a certain method of data acquisition. At present, the two-station spectral analysis of surface wave (SASW) and multi-station analysis of surface wave (MASW) are the most popular methods used worldwide. They involved different approachs in dispersion curve analysis. The debates between two methods are still undergoing. Besides, field configuration such as near offset, geophone spacing and source type would influence the performance of testing. Practically, try and error in the field need to be done before an optimum field configuration was determined. These two situations can be confusing to geotechnical engineers as to apply the method in daily work. The purpose of the study is to propose a more definitive guideline for MASW testing and analysis to optimize the effective frequency range of dispersive curves. Firstly, the influences of field
parameters were fully studied based on field data. Then, a framework based
on pseudo-section concept was proposed to minimize the problems. In the framework, to maximize the bandwidth of dispersion curve, multiple sources can be used for each walk-away shot. For each frequency component, the optimal combination of source and offset can be selected to mitigate the near and far field effects as well as maximize the obtainable bandwidth for the dispersion curve. An expansive offset range in the same spatial range by synthesizing seismic records with different nearest source-to-receiver offsets can be generated based on this approach. The dilemmas in the field configuration is solved and the bandwidth of dispersion curve is maximized. Three field examples demonstrated that this new approach provides a more definitive guideline for MASW testing and maximize the obtainable bandwidth for the dispersion curve.
中文摘要..........................................................................................................I Abstract ......................................................................................................... III
誌謝................................................................................................................ V
目錄...............................................................................................................VI
圖目錄........................................................................................................ VIII
第一章 緒論...................................................................................................1
1.1.研究動機...........................................................................................1
1.2 研究目的...........................................................................................3
1.3 研究內容...........................................................................................3
第二章 文獻回顧...........................................................................................5
2.1 剪力波速之應用...............................................................................5
2.2 震波的種類與其基本理論...............................................................7
2.3 表面波震測法..................................................................................9
2.3.1 表面波基本傳波原理 .........................................................10
2.3.2 表面波量測方法 .................................................................11
2.4 現地表面波震測頻散曲線之影響因子.........................................18
2.5 高側向解析度表面波震測法........................................................19
2.5.1 Pseudo-Section 概念 ........................................................... 21
2.5.2 Seaming 資料縫合 .............................................................. 22
2.5.3 Phase-scanning 資料縫合 ................................................... 25
2.5.4 f-k domain filter...................................................................28
第三章 研究方法與流程.............................................................................33
3.1 研究流程.........................................................................................33
3.2 研究方法.........................................................................................34
3.2.1 施測方法 ............................................................................. 34
3.2.2 f-k 濾波之應用....................................................................35
3.2.3 擬合方法 ............................................................................. 35
3.3 試驗儀器.........................................................................................37
3.4 測試場址.........................................................................................46
第四章 結果與討論.....................................................................................51
4.1 施測參數對頻散曲線之影響.........................................................51
4.1.1 不同震源特性比較 ............................................................. 52
4.1.2 不同近站支距比較 ............................................................. 54
4.1.3 不同受波器間距比較 ......................................................... 56
4.1.2 不同資料擬合方式之比較..........................................................58
4.3 多頻道表面波震測法 SOP 建立 ................................................... 61
4.4 現地測試之結果.............................................................................63
4.4.1 場址一_交通大學光復校區工二草皮 ............................. 64
4.4.2 場址二_交通大學光復校區 C 區壘球場.........................66
4.4.3 場址三_台北港 ................................................................. 68
第五章 結論與建議.....................................................................................71
5.1 結論.................................................................................................71
5.2 建議.................................................................................................72
參考文獻....................................................................................................... 73
[1]林俊宏,Pseudo-Section 概念於表面波震測應用之數值模擬探討,國 立交通大學,碩士論文,民國九十四年。
[2]Choon Byong Park, Richard D. Miller, and Julian Ivanov. Filtering surface waves. Kansas Geological Survey, Kansas,p. 3-10, 2000.
[3]Edwin A. Obando, Choon B. Park , Nils Ryden , Peter Ulriksen. Phase-scanning approach to correct time-shift inaccuracies in the surface-wave walk-away method, p.1528-1539, 2010.
[4]Heisey JS, Stokoe II KH, Hudson WR, Meyer AH. Determination of in situ shear wave velocities from spectral analysis of surface waves. Research Report No. 256-2, Center for Transportation Research, The University of Texas at Austin, p. 277,1982.
[5]Lin CP, Chang CC, Chang TS, ’’ The use of MASW method in the assessment of soil liquefaction potential’’ ,Soil dynamics and earthquake engineering, vol. 22, p. 89-98, 2004.
[6]Lin CP, Chang TS. Multi-station analysis of surface wave dispersion. Soil dynamics and earthquake engineering, vol. 24, p. 77-86, 2004.
[7]Nazarian S, Stokoe II KH.,’’In situ shear wavevelocities from spectral analysis of surface waves’’, Proceedings of Eighth Conference on Earthquake Engineering, San Francisco, vol. 3, p. 38-45,1984.
[8]林志平,張宗盛,陳逸龍,“Towards the standardization of Multi-station Surface Wave Method for Site Investigation’’,第十二屆非破壞性檢測 技術研討會,中華民國非破壞性檢測協會年度會議,p. 213-221,民 國九十三年。
[9]左天雄,「連續表面波試驗(CSWT)及反算分析地層剪力波速」,土木 73

技術,第二卷,第八期,p.48-62,民國八十八年。 [10]倪勝火,「表面波譜法(SASW)之分析原理與應用」,地工技術,第 86
期,p.5-18,民國八十九年。 [11]陳銘鴻,李榮瑞,「台灣地區地層波速之調查」,岩盤工程研討會論
文集,p.645-653,民國九十一年。 [12]林志平,張正宙,鄭孟雄,「以多頻道表面波量測地層之剪力速度」,
岩盤工程研討會論文集,N.21-22,民國九十一年。 [13]葉文謙,吳建閩,鍾毓東,余明山,「液化風險與土壤改良評估案例」,
地工技術,第 67 期,p.43-54,民國八十七年。 [14]簡連貴,林敏清,「回填造地土壤剪力波速之評估」,地工技術,第 67
期,p.69-82,民國八十七年。 [15]張正宙,「多頻道表面波震測之研究」,國立交通大學,碩士論文,
民國九十一年。
[16]Chien, Lien-Kwei and Yan-Nam Oh,’’Laboratory and Field Shear Wave Measurement at A Reclaimed Site in West Taiwan’’, Geotechnical Testing Journal, Vol.23, No.1, p.21-35, 2000.
[17]Carlo G.Lai, Glenn J.Rix, Sebastiano Foti, Vitantonio Roma, “Simultaneous measurement and inversion of surface wave dispersion and
attenuation curves’’, Soil Dynamics and Earthquake Engineering, Vol22,
p.923-930, 2002.
[18]Clayton, R. W., and McMechan, G. A.,“Inversion of refraction data by
wave field continuatio’’, Geophysics,Vol.46, p.860-868, 2002. [19]Gabriels, P. and Snieder, R. and Nolet, G., “In situ Measurements of
Shear-Wave Velocity in Sediments with Higher-Mode Rayleigh Waves”, Geophysical Prospecting, Vol. 35, p. 187~196, 1978.
74

[20]Hardin, B.O&Richart, F.E, “Elastic wave velocities in granular soi’’,
Journal of the Soil Mechanics and Foundations Division, N.SM1,
p.33-65, 1963.
[21]J.P. Sully and R.G. Campanella,“Evaluation of in situ anisotropy from
crosshole and downhole shear wave velocity measurements ’’,
Geotechnique, No.2, p.267-282, 1995.
[22]Kayabali, Kamil,“Soil liquefaction evaluation velocity’’, Engineering
Geology, Vol.44, p.121-127, 1996.
[23]Lin, C.-P., Chang, T.-S.,“Multi-station analysis of surface wave
dispersion’’, Soil Dynamics and Earthquake Engineering (in press),
2004.
[24]Lin, C.-P., Chang C.-C., and Chang, T.-S.,“The Use of MSASW
Method in the Assessment of Soil Liquefaction Potentia’’, Soil Dynamics
and Earthquake Engineering (in press), 2004.
[25]Luna, R. and Jadi H., “Determination of Dynamic Soil Properties Using
Geophysical Methods”, Geophysics 2000, St. Louis, Missouri,
December 15, 2000.
[26]Lancellotta.R,“Monotonic and cyclic loading behavior of two sands at
small strain’’, Geotechnical Testing Journal, Vol.16, No.4, p.409-424.
1993.
[27]McMechan, G. A. and Yedlin, M. J., “Analysis of Dispersive Waves by
Wave Field Transformation”, Geophysics, Vol. 46, No. 6, p. 869~874,
1981.
[28]Matthews, M. C., Hope, V. S. and Clayton, C. R. I., “The Use of Surface
Waves in the Determination of Ground Stiffness Profiles”, Geotechnical Engineering, The Proceedings of the Institute of Civil Engineering, Vol.
75

119, p. 84~95, 1996.
[29]McMechan, G. A. and Yedlin, M. J., “Analysis of Dispersive Waves by
Wave Field Transformation”, Geophysics, Vol. 46, No. 6, p.869~874,
1981.
[30]Nazarian S., Stokoe, II K. H. and Hudson, W. R., “Use of Spectral
Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems”, Transportation Research Record, Vol. 930, p. 38-45, 1983.
[31]Park, C. B., Miller, R. D. and Xia, J., “Multichannel Analysis of Surface Waves”, Geophysics, Vol. 64, No. 3, p. 800~808, 1999.
[32]Park, C. B., Miller, R. D. and Xia, J., “Imaging Dispersion Curves of Surface Waves on Multi-channel Record”, 68th Annual International Meeting, SEG Expanded Abstracts, p. 1377~1380, 1998.
[33] Stokoe,“Liquefaction resistance of soils from shear-wave velocity’’,, Journal of geotechnical and geo-environmental engineering, Vol.126, No.11,p.1015-1025.
[34]Rix GJ, Lai CG, Foti S.,“Simultaneous measurement of surface wave
dispersion and attenuation curves’’, Geotech Testing Journal, Vol.24,
No.4, p.350-358, 2001.
[35]R.D. Miller, S.E. Pullan,“ Field comparison of shallow seismic
sources’’, Geophysics, Vol.51, No.11, p.2067-2092. [36]Stokoe, II K. H., Wright, S. G., Bay, J. A. and Roesset, J. M. ,
“Characterization of Geotechnical Sites by SASW Method”, XIII
ISSMFE, New Delhi, India, p.15-25, 1994. [37]Sebastiano Foti,“Multistation Methods for Geotechnical
Characterization using Surface Waves’’, Politecnico di Torino, 76

Ph.D.Dissertation, 2000.
[38]Tokimatsu, and Uchida,“Correlation between liquefaction resistance
and shear wave velocity’’, Soils and Foundations, Vol.30, No.2, p.33-42,
1990.
[39]鄭挺,高側向解析度表面波震測法之優化,國立交通大學,碩士論文,民國104年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top