跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張閔淳
研究生(外文):Chang, Min-Chun
論文名稱:以製程需求表達法辨認切削特徵
論文名稱(外文):Machined Feature Recognition Based on Process Requirement Modeling
指導教授:巫木誠巫木誠引用關係
指導教授(外文):Wu, Muh-Cherng
口試委員:林清安巫木誠洪暉智陳文智
口試委員(外文):Lin, Alan CWu, Muh-CherngHung, Hui-ChihChen, Wen-Chih
口試日期:2017-04-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:加工特徵辨識切削製程製程需求表達法電腦輔助工藝規劃特徵交錯
外文關鍵詞:machined feature recognitionprocess requirement modelingcomputer aided process planning
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在應用製程需求表達法(process requirement modeling )來解決電腦製輔助規劃(CAPP)中的自動辨識特徵(machined feature recognition)問題。過去研究對加工特徵自動辨識,通常認為是一個廣義的圖形比對問題,這種方法在特徵辨識上相當受限於特徵的定義。本研究以Lee (2017)的擴充式製程需求表達法來求解特徵辨識問題,該表達法是Wu & Liu (1991)年所發展的製程需求表達法的延伸,所謂製程需求表達法是描述每一個加工面可加工刀具的範疇,若一個集合的相鄰加工面可用同一刀具加工,則此集合的加工面可視為是一個加工特徵。與過去研究相比,本研究所提的方法優點有二: (1) 簡化事前定義加工特徵,(2) 解決交錯特徵問題。
This research attempts to solve the machined feature recognition problem in the area of computer aided process planning. Prior studies considered the machined feature recognition problem as a generalized graph-matching problem. Due to the requirement of defining a machined feature as a graph in advance, the prior approach is limited in the scope of recognizable machined features because such a machined feature definition paradigm is enumerative and can never be exhaustive. In this research, we use the enhanced process requirement modeling developed by Lee (2017) to solve the machined feature recognition problem. The enhanced process requirement modeling, an extension of Wu & Liu (1991), models a machined face by the scope of feasible cutters that can machine the face. Then, a set of connected machined faces that can be machined by a common cutter is called a machined feature. Compared to prior studies, the proposed approach is distinguished in two perspectives: (1) we don’t need to define machined features in advance in an enumerative manner, and (2) we can effectively recognize interacting machined features that were difficult to recognize by prior studies.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
一、緒論 1
1.1研究背景 1
1.2研究動機 3
1.3研究目的 4
1.4論文章節安排 4
二、文獻回顧 5
2.1 CAD檔案與CAPP源起 5
2.2 特徵文獻 6
2.3加工特徵自動辨識文獻 7
2.4 製程需求表達法 13
三、問題描述 15
3.1 研究問題 15
3.2研究假設 17
3.3製程需求表達法 18
3.3.1製程需求表達法(PRMold) 18
3.3.2改良製程需求表達法(PRMnew) 19
3.4製程需求表達法與特徵演算法 22
3.5研究目標 23
四、研究架構與方法 24
4.1 研究架構 24
4.2 製程需求表達法(Process Requirement Modeling)資訊 25
4.2.1 PRM資訊介紹 25
4.3 特徵辨識演算法(Feature Recognition Process) 29
4.3.1 特徵辨識定義 29
4.3.2 特徵辨識演算法架構 31
4.3.2 特徵辨識演算法求解流程 32
4.3.3特徵辨識演算法求解步驟 33
五、研究結果 46
5.1 自動化特徵辨識 46
5.2 特徵辨識結果 47
5.2.6 切削工件一 47
5.2.2 切削工件二 50
5.2.3 切削工件三 52
5.2.4 切削工件四 55
5.2.5 切削工件五 57
5.2.1 切削工件六 60
六、結論與未來研究 62
6.1結論 62
6.2未來研究 63
參考文獻 64
1. Babic, B., Nesic, N., & Miljkovic, Z. (2008). A review of automated feature recognition with rule-based pattern recognition. Computers in Industry, 59(4), 321-337.

2. Di Stefano, P., Bianconi, F., & Di Angelo, L. (2004). An approach for feature semantics recognition in geometric models. Computer-Aided Design, 36(10), 993-1009.

3. Gavankar, P., & Henderson, M. R. (1990). Graph-based extraction of protrusions and depressions from boundary representations. Computer-Aided Design, 22(7), 442-450.
Gindy, N. N. Z. (1989). A hierarchical structure for form features. The International Journal of Production Research, 27(12), 2089-2103.

4. Henderson, M. R., & Anderson, D. C. (1984). Computer recognition and extraction of form features: a CAD/CAM link. Computers in industry, 5(4), 329-339.

5. Huang, Z., & Yip-Hoi, D. (2002). High-level feature recognition using feature relationship graphs. Computer-Aided Design, 34(8), 561-582.

6. Jong, W. R., Lai, P. J., & Li, T. C. (2014). Integration and application of feature recognition and mould manufacturing planning navigating process. International Journal of Production Research, 52(20), 5945-5964.

7. Joshi, S., & Chang, T. C. (1988). Graph-based heuristics for recognition of machined features from a 3D solid model. Computer-Aided Design, 20(2), 58-66.

8. Kyprianou, L. K. (1980). Shape classification in computer-aided design (Doctoral dissertation, University of Cambridge).

9. Lai, J. Y., Wang, M. H., Chiu, Y. K., Hsu, C. H., Tsai, Y. C., & Huang, C. Y. (2016). Recognition of depression and protrusion features on B-rep models based on virtual loops. Computer-Aided Design and Applications, 13(1), 95-107.

10. Liu, J., Liu, X., Cheng, Y., & Ni, Z. (2015). An algorithm of mapping the protrusion feature on the slanting face to its manufacturing feature volume in the process planning. International Journal of Advanced Manufacturing Technology, 79.

11. Liu, X., Li, Y., & Gao, J. (2016). A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1259-1268.

12. Marefat, M., & Kashyap, R. L. (1990). Geometric reasoning for recognition of three-dimensional object features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 949-965.

13. Rahmani, K., & Arezoo, B. (2006). Boundary analysis and geometric completion for recognition of interacting machining features. Computer-Aided Design, 38(8), 845-856.

14. Rahmani, K., & Arezoo, B. (2007). A hybrid hint-based and graph-based framework for recognition of interacting milling features. Computers in Industry, 58(4), 304-312.
Salem, A. A., Abdelmaguid, T. F., Wifi, A. S., &

15. Elmokadem, A. (2017). Towards an efficient process planning of the V-bending process: an enhanced automated feature recognition system. The International Journal of Advanced Manufacturing Technology, 1-19.

16. Sunil, V. B., Agarwal, R., & Pande, S. S. (2010). An approach to recognize interacting features from B-Rep CAD models of prismatic machined parts using a hybrid (graph and rule based) technique. Computers in Industry, 61(7), 686-701.

17. Venu, B., Komma, V. R., & Srivastava, D. (2015). A Methodology to Recognize Manufacturing Features of Prismatic Parts from STEP AP 203 File. Materials Today: Proceedings, 2(4-5), 3170-3177.

18. Venuvinod, P. K., & Wong, S. Y. (1995). A graph-based expert system approach to geometric feature recognition. Journal of Intelligent Manufacturing, 6(3), 155-162.

19. Wan, N., Du, K., Zhao, H., & Zhang, S. (2015). Research on the knowledge recognition and modeling of machining feature geometric evolution. International Journal of Advanced Manufacturing Technology, 79.

20. Wang, Z., Wang, Z., Liu, H., Huo, Z., & Fan, B. (2016). Feature matching using guidance-constraint method. IET Computer Vision, 10(7), 718-727.

21. Wu, M. C., & Lit, C. R. (1996). Analysis on machined feature recognition techniques based on B-rep. Computer-aided design, 28(8), 603-616.

22. Wu, M. C., & Liu, C. R. (1991). Flexible process planning for finish machining based on process requirements modelling. International Journal of Computer Integrated Manufacturing, 4(2), 121-132.

23. Yuen, C. F., & Venuvinod, P. (1999). Geometric feature recognition: coping with the complexity and infinite variety of features. International Journal of Computer Integrated Manufacturing, 12(5), 439-452.

24. Zhang, X., Nassehi, A., & Newman, S. T. (2014). Feature recognition from CNC part programs for milling operations. The International Journal of Advanced Manufacturing Technology, 70(1-4), 397-412.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top