跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威呈
研究生(外文):Chen,Wei-Cheng
論文名稱:台灣電商產業與物流產業之互動關係
論文名稱(外文):An Analysis of Interaction Relationships between e-Commerce and Logistics Industries
指導教授:巫木誠巫木誠引用關係
指導教授(外文):Wu, Muh-Cherng
口試委員:林清安陳文智洪暉智
口試委員(外文):Lin, Alan C.Chen, Wen-ChihHung, Hui-Chih
口試日期:2017-04-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:42
中文關鍵詞:電子商務物流Lotka-Volterra Model
外文關鍵詞:e-commercelogisticLotka-Volterra Model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:57
本研究的目的為使用Lotka-Volterra Model分析公開營收數據,探討台灣的物流產業與電商產業之間的互動情形。對比原始Lotka-Volterra Model,本研究透過Hodrick-Prescott Filter去除季節波動的影響,以趨勢信號進行營收預測以及產業競爭分析。預測方面,本研究方法的預測能力優於原始Lotka-Volterra Model,預測結果顯示未來物流產業與電商產業會呈現共存的均衡狀態,營收部分也還有許多成長空間。產業競爭分析方面,本研究的結果為物流產業與電商產業皆有良好的自體成長,其中各產業對於物流的需求提升,使得物流產業有較大的成長。但兩產業之中皆有內在競爭(對營收有負面影響),電商產業內在競爭較小於物流產業,可能原因是電商是新興產業因此尚有許多需求未被滿足,所以。兩產業之間存有互利共生的互動關係,透過有效的合作,物流產業與電商產業能夠帶動彼此的成長,促進兩產業共同發展。
The research applies the Lotka-Volterra model based on the revenue trend data to explore the interaction relationship between Taiwan's logistics industry and e-commerce industry. The revenue trend data is obtained by removing the seasonal fluctuation signal from raw revenue data. Experiment results reveal that the Lotka-Volterra model based on trend revenue data significantly outperforms that based on raw revenue data in terms of forecasting accuracy. Further experiments reveal the following findings. First, logistics industry and e-commerce industry both have a positive self-growth, which implies that the two industries are both promising industries. Second, the two industries both have internal competition, which impose a negative impact to their revenues. Third, the interaction relationship between the two industries is mutualism, which implies that the two industries help each other in revenue growth. The demand of e-commerce requires physical shipping, which in turn drives the demand of logistics. The higher the demand of logistics implies the additional installation of logistics capacity, which tends to reduce the shipping time and in turn drives the demand of e-commerce.
中文摘要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
表目錄 vi
圖目錄 1
一、 緒論 2
1.1 研究背景與動機 2
1.2 研究問題 4
1.3 研究目的與方法 4
1.4 章節安排 5
二、 文獻回顧 6
2.1 LV-Model 6
2.2 單物種預測 7
2.3 零售產業預測文獻 7
2.4 LV-Model多物種預測 9
2.5 本論文特色 11
三、 研究方法 12
3.1 Basic LV-Model 12
3.2 Filtered LV-Model 13
3.2.1 Step 1: 濾波 14
3.2.2 Step 2: 趨勢信號預測 15
3.2.3 Step 3: 季節信號預測 17
3.2.4 Step 4: 各產業預測營收 17
3.3 預測準確度檢測 18
3.4 均衡分析 19
四、 實驗結果 22
4.1 原始數據 22
4.2 兩模型比較結果 24
4.2.1 參數估計值結果 24
4.2.2 預測準確度比較 26
4.2.3 小結 28
4.3 物種競爭關係分析(ai、bi、ci) 29
4.4 產業成長分析 32
4.4.1 均衡分析結果 32
4.4.2 物流產業-成長趨勢分析 34
4.4.3 電商產業-成長趨勢分析 35
五、 結論 37
5.1 研究貢獻 37
5.2 未來研究 38
參考文獻 40
Aburto, L., & Weber, R. (2007). “Improved supply chain management based on hybrid demand forecasts.” Applied Soft Computing, 7, 136-144.
Alon, I., Qi, M., & Sadowski, R. J. (2001). “Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods.” Journal of Retailing and Consumer Services, 8, 147-156.
Au, K. F., Choi, T. M., & Yu. , Y. (2008). “Fashion retail forecasting by evolutionary neural networks.” International Journal of Production Economics, 114, 615-630.
Cerqueti, R., Tramontana, F. & Ventura, M. (2015). “On the coexistence of innovators and imitators.” Technological Forecasting & Social Change, 90 (2015), 487-496.
Chu, C. W., & Zhang, G. P. (2003). “A comparative study of linear and nonlinear models for aggregate retail sales forecasting.” International Journal of Production Economics, 86, 217-231.
Frank, C., Garg, A., Raheja, A., & Sztandera, L. (2003). “Forecasting women's apparel sales using mathematical modeling.” International Journal of Clothing Science and Technology, 15, 107-125.
Guidolin, M. & Guseo, R. (2015). “Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters.” Technological Forecasting & Social Change, 99 (2015), 35-46.
Hodrick, R. J., Prescott, E.C. (1997). “Postwar US business cycles: An empirical investigation. Journal of Money,” Credit and Banking, 29, 1-16.
Hui-Chih Hung, Yun-San Tsai, and Muh-Cherng Wu, (2014). “ A modified Lotka-Volterra model for competition forecasting in Taiwan's retail industry,” Computers & Industrial Engineering, Volume 77, pp. 70-79.
ITOGA, H., LIN, T. R., YANG, C. H. & SHYU, J. Z. (2014). “Dynamics of Industrial Cluster Scenarios.” Revista de cercetare si interventie sociala, 47, 233-249.
Jain, D. C., & Rao, R. C. (1990). “Effect of price on the demand for durables: Modeling, estimation, and findings.” Journal of Business and Economic Statistics, 8(2), 163-170.
Kreng, V. B., & Wang, H. T. (2009). “The interaction of the market competition between LCD TV and PDP TV.” Computers and Industrial Engineering, 57, 1210-1217.
Kreng, V. B., Wang, T. C. & Wang, H. T. (2012). “Tripartite dynamic competition and equilibrium analysis on global television market.” Computers & Industrial Engineering, 63 (2012), 75-81.
Kuvulmaz, J., Usanmaz, S., & Engin, S. N. (2005). “Time-Series Forecasting by Means of Linear and Nonlinear Models.” MICAI 2005: Advances in Artificial Intelligence, 3789, 504-513.
Lee, S. J., Lee, D. J. & Oh, H. S. (2005). “Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka–Volterra model.” Technological Forecasting & Social Change, 72 (2005), 1044-1057.
Marasco, A., Picucci, A. & Romano, A. (2016). “Market share dynamics using Lotka–Volterra models.” Technological Forecasting & Social Change, 105(2016), 49-62.
Michalakelis, C.,Christodoulos, C., Varoutas, D.& Sphicopoulos, T.(2012). “Dynamic estimation of markets exhibiting a prey–predator behavior.” Expert Systems with Applications, 39 (2012), 7690-7700.
Pan, Y., Pohlen, T., & Manago, S. (2013). “Hybrid neural network model in forecasting aggregate US retail sales.” Advances in Business and Management Forecasting, 9, 153-170.
Pretorius, L., Pretorius, J. H. C. & Benade, S.J. (2015). “A system dynamics approach to technology interaction: From asymptotic to cyclic behavior.” Technological Forecasting & Social Change, 97 (2015), 223-240.
Ramos, P., Santos, N., & Rebelo, R. (2015). “Performance of state space and ARIMA models for consumer retail sales forecasting.” Robotics and Computer-Integrated Manufacturing, 34, 151-163.
Wang, H. T & Wang, T. C. (2016). “Application of the grey Lotka-Volterra model to forecast the diffusion and competition analysis of the TV and smartphone industries.” Technological Forecasting & Social Change, 106(2016), 37-44.
Winters, P. R. (1960). “Forecasting sales by exponentially weighted moving averages.” Management Science, 6, 324-342.
Wong, W. K., & Guo, Z. X., (2010). “A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm.” International Journal of Production Economics, 128, 612-624.
Zhang, G. P., & Qi, M. (2005). “Neural network forecasting for seasonal and trend time series.” European Journal of Operational Research, 160, 501-514.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊