跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威廷
研究生(外文):Chen, Wei-Ting
論文名稱:應用增生少數合成技術與二階段邏輯斯迴歸方法建構汽車租賃信用風險評估模型
論文名稱(外文):Construction of Credit Risk Assessment Model for Car Leasing by SMOTE and Two-Stage Logistic Regression Techniques
指導教授:張永佳張永佳引用關係
指導教授(外文):Chang, Yung-Chia
口試委員:唐麗英張桂琥
口試委員(外文):Tong, Lee-IngChang, Kuei-Hu
口試日期:2017-06-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:信用風險評估模型邏輯斯迴歸增生少數合成技術類別不對稱
外文關鍵詞:credit risk assessment modellogistic regressionsynthetic minority over-sampling techniquecategory asymmetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在汽車租賃業中辦理汽車租賃時,大多經由租賃專員由申請戶所填寫之資料進行與其往來與否的評估標準,以人工判斷的方式不僅費時,也會受到租賃專員個人的專業經驗而影響決策的品質。目前中、外文獻中針對汽車租賃業以量化的方式針對申請戶的信用風險評估相關研究非常稀少,除了資料不易取得外,對可用於衡量汽車租賃業信用風險的變數也少見相關的討論。本研究針對汽車租賃業的信用風險評估模型進行研究,利用增生少數合成技術處理高風險與低風險資料數量比例懸殊的問題,再以二階段的方式,應用邏輯斯迴歸以增強風險評估模型的分類效果。本研究利用以台灣某金融機構所提供之汽車租賃申請案件的實際資料來驗證所提出方法的可行性與有效性。研究結果顯示本研究所提出之方法能夠有效處理資料極端不對稱的問題,並可有效用於客觀地評估汽車租賃申請案件的違約風險。
In traditional car leasing industry, most of the case approvals are conducted by car-leasing appraisers based on the information provided by the applicants. This process is not only time-consuming but also subjective to appraisers’ personal and professional experiences. As a result, it may lead to wrongfully approving a case which turned into default or rejecting a good-quality applicant. Objectively using quantitative methods to measure credit risks of loan applicants by financial institutes has been widely applied and accepted. However, literatures regarding using such methods in making car-leasing decisions are rare which may due to the fact that that real data is not easy to collect and also lack of study in discussing the variables to effectively evaluating the credit risk of car-leasing applicants. As a result, this research aims at assessing the credit risk of car-leasing industry by using quantitative model. This study first applied the synthetic minority over-sampling technique (SMOTE) to resolve the class-imbalance problem found in the data since it was found that the number of good-credit applicants are a lot more than the bad-credit ones. Furthermore, this study designed a two-stage method applied Logistic regression in each stage to enhance the effect of the risk assessment model. A set of real data of car-leasing applications provided by a financial organization in Taiwan is used to demonstrate the effectiveness of efficiency of the propose model. The results shown that SMOTE was more effective than over- or under sampling methods in terms of resolving the class imbalance problem found in the data. Moreover, the variables chosen in this study for model building along with the proposed approach were be able to objectively assess the credit risk of the car-leasing applicants.
摘要 i
ABSTRACT ii
誌謝 iii
圖目錄 v
表目錄 vi
一、 緒論 1
1.1研究背景與動機 1
1.2研究目的 4
1.3研究架構與流程 4
二、 文獻探討 6
2.1汽車租賃 6
2.2信用風險評估模型 7
2.3增生少數合成技術 10
2.4邏輯斯迴歸 13
2.5 ROC曲線 15
三、 研究方法 17
3.1問題描述 17
3.2風險評估模型建構 17
3.2.1資料收集與整理 18
3.2.2模型之建構 18
3.2.3模型之驗證 21
四、 實例驗證 23
4.1建構風險評估模型 23
4.2與其他抽樣模型比較結果 31
五、 結論與建議 35
5.1研究貢獻 35
5.2未來研究與建議 36
參考文獻 37
朱逸暉(2009)應用自組性演算法建構多階段信用風險評估模型。交通大學工業工程與管理學系碩士論文,新竹市。
何偉(2015)。以資料探勘方法發展汽車租賃之風險預測模型。國立臺北科技大學管理學院資訊與財金管理在職專班(EMB)學位論文,台北市。
吳佩珊(2008)。建構台灣中小企業兩階段風險評估模型。交通大學工業工程與管理學系碩士論文,新竹市。
林宜憲(2012)。應用增生少數合成技術建構信用風險評估模型。交通大學工業工程與管理學系碩士論文,新竹市。
葉淑慧(2008)。汽車租賃業顧客滿意度與顧客忠誠度關係之個案研究。成功大學高階管理碩士在職專班 (EMBA) 學位論文,台南市。
蘇綵華(2013)。集群分析於汽車租賃業實務應用之研究。國立臺灣科技大學管理研究所學位論文,台北市。
Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE transactions on neural networks, 12(4), 929-935.
Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275.
Alkhatib, R., Diab, M., Moslem, B., Corbier, C., & El Badaoui, M. (2015). Gait-Ground Reaction Force Sensors Selection Based on ROC Curve Evaluation. Journal of Computer and Communications, 3(03), 13.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71-111. Altman, E. I. (1968)..
Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the operational research society, 54(6), 627-635.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357-365.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357-365.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Caesarendra, W., Widodo, A., & Yang, B. S. (2010). Application of relevance vector machine and logistic regression for machine degradation assessment. Mechanical Systems and Signal Processing, 24(4), 1161-1171.
Desai, V. S., Crook, J. N., & Overstreet, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37.
Figini, S., & Giudici, P. (2016). Credit risk assessment with Bayesian model averaging. Communications in Statistics-Theory and Methods, (just-accepted).
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463-484.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33(4), 847-856.
Huang, J. J., Tzeng, G. H., & Ong, C. S. (2006). Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation, 174(2), 1039-1053.
Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian journal of internal medicine, 4(2), 627.
Johnson, J. P., Schneider, H. S., & Waldman, M. (2014). The role and growth of new-car leasing: Theory and evidence. The Journal of Law and Economics, 57(3), 665-698.
Karabulut, E. M., & Ibrikci, T. (2014). Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. Journal of medical systems, 38(5), 50.
Lessmann, S., Listiani, M., & Voß, S. (2010). Decision Support in Car Leasing: a Forecasting Model for Residual Value Estimation. In ICIS (p. 17).
Laitinen, E. K. (1999). Predicting a corporate credit analyst's risk estimate by logistic and linear models. International Review of Financial Analysis, 8(2), 97-121.
Lin, T. H. (2009). A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models. Neurocomputing, 72(16), 3507-3516.
Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530-541.
Mohammadi, N., & Zangeneh, M. (2016). Customer Credit Risk Assessment using Artificial Neural Networks. International Journal of Information Technology and Computer Science (IJITCS), 8(3), 58.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131.
Reichert, A. K., Cho, C. C., & Wagner, G. M. (1983). An examination of the conceptual issues involved in developing credit-scoring models. Journal of Business & Economic Statistics, 1(2), 101-114.
Verbiest, N., Ramentol, E., Cornelis, C., & Herrera, F. (2014). Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Applied Soft Computing, 22, 511-517.
Wang, K. J., Makond, B., Chen, K. H., & Wang, K. M. (2014). A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Applied Soft Computing, 20, 15-24.
Wu, X., & Meng, S. (2016, June). E-commerce customer churn prediction based on improved SMOTE and AdaBoost. In Service Systems and Service Management (ICSSSM), 2016 13th International Conference on (pp. 1-5). IEEE.
Zeng, M., Zou, B., Wei, F., Liu, X., & Wang, L. (2016, May). Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data. In Online Analysis and Computing Science (ICOACS), IEEE International Conference of (pp. 225-228). IEEE.
Zhang, L., & Wang, W. (2011, September). A re-sampling method for class imbalance learning with credit data. In Information Technology, Computer Engineering and Management Sciences (ICM), 2011 International Conference on (Vol. 1, pp. 393-397). IEEE.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top