朱逸暉(2009)應用自組性演算法建構多階段信用風險評估模型。交通大學工業工程與管理學系碩士論文,新竹市。何偉(2015)。以資料探勘方法發展汽車租賃之風險預測模型。國立臺北科技大學管理學院資訊與財金管理在職專班(EMB)學位論文,台北市。
吳佩珊(2008)。建構台灣中小企業兩階段風險評估模型。交通大學工業工程與管理學系碩士論文,新竹市。林宜憲(2012)。應用增生少數合成技術建構信用風險評估模型。交通大學工業工程與管理學系碩士論文,新竹市。葉淑慧(2008)。汽車租賃業顧客滿意度與顧客忠誠度關係之個案研究。成功大學高階管理碩士在職專班 (EMBA) 學位論文,台南市。蘇綵華(2013)。集群分析於汽車租賃業實務應用之研究。國立臺灣科技大學管理研究所學位論文,台北市。
Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE transactions on neural networks, 12(4), 929-935.
Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275.
Alkhatib, R., Diab, M., Moslem, B., Corbier, C., & El Badaoui, M. (2015). Gait-Ground Reaction Force Sensors Selection Based on ROC Curve Evaluation. Journal of Computer and Communications, 3(03), 13.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71-111. Altman, E. I. (1968)..
Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the operational research society, 54(6), 627-635.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357-365.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357-365.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Caesarendra, W., Widodo, A., & Yang, B. S. (2010). Application of relevance vector machine and logistic regression for machine degradation assessment. Mechanical Systems and Signal Processing, 24(4), 1161-1171.
Desai, V. S., Crook, J. N., & Overstreet, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37.
Figini, S., & Giudici, P. (2016). Credit risk assessment with Bayesian model averaging. Communications in Statistics-Theory and Methods, (just-accepted).
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463-484.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33(4), 847-856.
Huang, J. J., Tzeng, G. H., & Ong, C. S. (2006). Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation, 174(2), 1039-1053.
Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian journal of internal medicine, 4(2), 627.
Johnson, J. P., Schneider, H. S., & Waldman, M. (2014). The role and growth of new-car leasing: Theory and evidence. The Journal of Law and Economics, 57(3), 665-698.
Karabulut, E. M., & Ibrikci, T. (2014). Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. Journal of medical systems, 38(5), 50.
Lessmann, S., Listiani, M., & Voß, S. (2010). Decision Support in Car Leasing: a Forecasting Model for Residual Value Estimation. In ICIS (p. 17).
Laitinen, E. K. (1999). Predicting a corporate credit analyst's risk estimate by logistic and linear models. International Review of Financial Analysis, 8(2), 97-121.
Lin, T. H. (2009). A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models. Neurocomputing, 72(16), 3507-3516.
Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530-541.
Mohammadi, N., & Zangeneh, M. (2016). Customer Credit Risk Assessment using Artificial Neural Networks. International Journal of Information Technology and Computer Science (IJITCS), 8(3), 58.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131.
Reichert, A. K., Cho, C. C., & Wagner, G. M. (1983). An examination of the conceptual issues involved in developing credit-scoring models. Journal of Business & Economic Statistics, 1(2), 101-114.
Verbiest, N., Ramentol, E., Cornelis, C., & Herrera, F. (2014). Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Applied Soft Computing, 22, 511-517.
Wang, K. J., Makond, B., Chen, K. H., & Wang, K. M. (2014). A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Applied Soft Computing, 20, 15-24.
Wu, X., & Meng, S. (2016, June). E-commerce customer churn prediction based on improved SMOTE and AdaBoost. In Service Systems and Service Management (ICSSSM), 2016 13th International Conference on (pp. 1-5). IEEE.
Zeng, M., Zou, B., Wei, F., Liu, X., & Wang, L. (2016, May). Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data. In Online Analysis and Computing Science (ICOACS), IEEE International Conference of (pp. 225-228). IEEE.
Zhang, L., & Wang, W. (2011, September). A re-sampling method for class imbalance learning with credit data. In Information Technology, Computer Engineering and Management Sciences (ICM), 2011 International Conference on (Vol. 1, pp. 393-397). IEEE.