跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉昱承
研究生(外文):Liu, Yu-Cheng
論文名稱:應用無母數Bootstrap法建構新製程之Q管制圖
論文名稱(外文):Applying Nonparametric Bootstrap Method to Construct Q Control Chart for Start-up process
指導教授:唐麗英唐麗英引用關係洪瑞雲洪瑞雲引用關係
指導教授(外文):Tong, Lee-IngHorng, Ruey-Yun
口試委員:唐麗英洪瑞雲黎正中
口試委員(外文):Tong, Lee-IngHorng, Ruey-YunLi, Chang-Chung
口試日期:2017-06-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:28
中文關鍵詞:Bootstrap方法Q管制圖Weibull製程分佈新製程
外文關鍵詞:Bootstrap methodQ control chartWeibull distributionstart-up process
相關次數:
  • 被引用被引用:6
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統Shewhart管制圖建構時製程資料須服從常態分配並且需要有足夠的歷史資料才能有效建構管制圖之管制界線。然而為因應廠商、顧客日新月異之要求,不斷推出新的產品,使的生產週期縮短,導致一些產品缺少足夠歷史資料來建構傳統Shewhart管制圖。針對此問題,Quesenberry (1991) 提出Q管制圖,以在僅有少量資料的情況下有效建構管制圖。在利用Q管制圖管制新製程資料,需假設製程資料彼此獨立且呈常態分佈;若製程資料分布呈現非常態分佈時,使用Q管制圖可能會增加型一誤差(Type I error)和型二誤差(Type II error)發生的機率,而無法準確地偵測出變異。因此,本研究利用無母數複式模擬法(Bootstrap methods)增生資料,並利用兩種複式信賴區間(Percentile Bootstrap,PB; Bias-corrected and accelerated bootstrap,BCa)來建構Q管制圖之管制界線。最後本研究模擬製程資料呈Weibull分布的各種參數情況下,進行敏感度分析以驗證本研究提出之無母數複式Q管制圖在不同樣本組數以及不同偏態下之有效性。本研究結果顯示,在多數情況下以PB信賴區間所建構之Q管制圖之管制界線在製程穩定的狀態下,平均連串長度(〖ARL〗_0)最佳,BCa和傳統Q管制圖較差;當製程平均數產生偏移時,在大多數情況下利用PB信賴區間所建立之Q管制圖其管制效果皆能優於傳統Q管制圖,因此,整體而言,當新製程資料呈非常態分佈(如:Weibull分布)時,在Weibull分佈不同的參數組合下,和傳統Q管制圖相比,本研究提出之無母數複式Q管制圖有較佳的監控能力。
Traditional Shewhart control chart reguires that the process data follow a normal distribution and also need sufficiently large data to accurately construct the control chart. However, in response to the ever-changing requirements from customers, the design of new products, the shortening of the production cycle, resulting in lack of sufficient historical data to build the traditional Shewhart control chart. Previous study has proposed a Q chart to effectively construct a control chart with only a small amount of data. In applying the Q control chart to control the new process data, it is still necessary to require that the process data are independent of each other and are normally distributed. If the distribution of the process data is non-normal, utilizing the Q chart may increase the probability of a type 1 error and type 2 error. Conseguently the Q chart can not accurately detect the process variation. Therefore, this study utilizes the Bootstrap Methods to generate data and that constructs the Q-chart using two types of Boostrap confidence intervals (Percentile Bootstrap (PB) and Bias-corrected and accelerated bootstrap (BCa)). The sensitivity analysis was carried out to verify the effectiveness of the proposed method of Boostrap Q-chart under various sample sizes and various values of parameter combinations of a Weibull distribution. The results of this study show that, in most cases, the average run length 〖ARL〗_(0 )of PB method has the largest values. When the process averages are shifted, in most cases the Q-control chart established using the PB confidence interval is superior to the traditional Q-control chart. Therefore, in general, when the new process data is presented in non-normal process (such as: Weibull distribution), the proposed non-parametric PB method is recommended to construct the Q-control chart.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章緒論 1
1.1研究背景與動機 1
1.2研究目的 2
第二章 文獻探討 3
2.1 統計品質管制 3
2.2 Shewhart X-R管制圖 3
2.3 Q管制圖 4
2.4 複式模擬法 6
2.5 複式管制圖相關文獻 9
第三章 研究方法 11
3.1複式Q管制圖 11
3.2敏感度分析 13
第四章 模擬驗證 16
4.1參數設定 16
4.2製程穩定狀態下,模擬分析結果 17
4.3製程產生偏移狀態下,模擬分析結果 20
第五章 結論 25
5.1研究貢獻 25
5.2後續研究與建議 25
參考文獻 26
[1] 黃昭晴(2014) ,「 利用Bootstrap管制圖監控對數常態製程平均數之有效性評估」,交通大學工業工程與管理學系碩士論文。
[2] 蘇楷威(2015) ,「利用無母數Bootstrap法建構對數常態製程之全距管制圖」,交通大學工業工程與管理學系碩士論文。
[3] 張雅婷(2016) ,「應用無母數Bootstrap法建構Burr分佈製程之平均數管制」,交通大學工業工程與管理學系碩士論文。
[4] 李岱宴(2016) ,「利用無母數Bootstrap法建構Burr分佈製程之全距管制圖」,交通大學工業工程與管理學系碩士論文。
[5] Alemi, F. (2004). Tukey's control chart. Quality Management in Healthcare, 13(4), 216-221.
[6] Chatterjee, S., & Qiu, P. (2009). Distribution-free cumulative sum control charts using bootstrap-based control limits. The Annals of applied statistics, 349-369.
[7] Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 1-26.
[8] Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.

[9] Edopka, I. W. and Ogbeide, E. M.“Bootstrap approach control limit for statistical quality control, International Journal of Engineering Science Invention, 2, 28-33, 2013.
[10] Farnum, N. R. (1995). Discussion. Journal ofQuality Technology, 27, 322-323.
[11] Garjani, M., Noorossana, R., & Saghaei, A. (2010). A neural network-based control scheme for monitoring start-up processes and short runs. The International Journal of Advanced Manufacturing Technology, 51(9-12), 1023-1032.
[12] Hawkins, D. M. (1995). Discussion. Journal of Quality Technology, 27, 324-327.
[13] Liu, R. Y. and Tang, Y.“Control Chart for dependent and independent measurements based on bootstrap methods, Journal of the American Statistical Association, 91, 1694-1700, 1996.
[14] Montgomery, D. C. (2009). Statistical Quality Control-A Modern Introduction, John Whiley & Sons. Inc., New York.
[15] Quesenberry, C. P. (1991c). SPC Q charts for start-up processes and short or long runs. Journal of Quality Technology, 23(3), 213-224.
[16] Torng, C.-C., & Lee, P.-H.(2008). ARL Performance of the Tukey's Control Chart. Communications in Statistics -Simulation and Computation, 37(9), 1904-1913. doi:10.1080/03610910802263141
[17] Torng, C.-C., Liao, H.-N., Lee, P.-H., & Wu, J.-C. (2009). Performance evaluation of a Tukey’scontrol chart in monitoring gamma distribution and short run processes.Paper presented at the Hong Kong: In Proceedings of the International MultiConference of Engineers and Computer Scientists.
[18] Tukey, J., & Brillinger, D. (1986). The collected works of John W. Tukey, philosophy and principles of data analysis 1965–1986. Volume IV: Belmont, CA: Wadsworth Advanced Books & Software.
[19] Xin, S., Li, Y., & Li, M. (2008). Quality Control Charts for log-normal distribution based on bootstrap method.Paper presented at the 2008 27th Chinese Control Conference.
[20] Zantek, P. F. (2005). Run-length distributions of Q-chart schemes. IIE Transactions, 37(11), 1037-1045. doi:10.1080/07408170500232297
[21] Zantek, P. F. (2006). Design of Cumulative Sum Schemes for Start-Up Processes and Short Runs. Journal of Quality Technology, 38(4), 365-375.
[22] Zantek, P. F. (2008). A Markov-chain method for computing the run-length distribution of the self-starting cumulative sum scheme. Journal of Statistical Computation and Simulation, 78(5), 463-473. doi:10.1080/00949650601146562
[23] Zhang, L., Chen, G., & Castagliola, P. (2009). On t and EWMA t charts for monitoring changes in the process mean. Quality and Reliability Engineering International, 25(8), 933-945.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊