[1] 黃昭晴(2014) ,「 利用Bootstrap管制圖監控對數常態製程平均數之有效性評估」,交通大學工業工程與管理學系碩士論文。[2] 蘇楷威(2015) ,「利用無母數Bootstrap法建構對數常態製程之全距管制圖」,交通大學工業工程與管理學系碩士論文。
[3] 張雅婷(2016) ,「應用無母數Bootstrap法建構Burr分佈製程之平均數管制」,交通大學工業工程與管理學系碩士論文。[4] 李岱宴(2016) ,「利用無母數Bootstrap法建構Burr分佈製程之全距管制圖」,交通大學工業工程與管理學系碩士論文。
[5] Alemi, F. (2004). Tukey's control chart. Quality Management in Healthcare, 13(4), 216-221.
[6] Chatterjee, S., & Qiu, P. (2009). Distribution-free cumulative sum control charts using bootstrap-based control limits. The Annals of applied statistics, 349-369.
[7] Efron, B. (1979). Bootstrap methods: another look at the jackknife. The annals of Statistics, 1-26.
[8] Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.
[9] Edopka, I. W. and Ogbeide, E. M.“Bootstrap approach control limit for statistical quality control, International Journal of Engineering Science Invention, 2, 28-33, 2013.
[10] Farnum, N. R. (1995). Discussion. Journal ofQuality Technology, 27, 322-323.
[11] Garjani, M., Noorossana, R., & Saghaei, A. (2010). A neural network-based control scheme for monitoring start-up processes and short runs. The International Journal of Advanced Manufacturing Technology, 51(9-12), 1023-1032.
[12] Hawkins, D. M. (1995). Discussion. Journal of Quality Technology, 27, 324-327.
[13] Liu, R. Y. and Tang, Y.“Control Chart for dependent and independent measurements based on bootstrap methods, Journal of the American Statistical Association, 91, 1694-1700, 1996.
[14] Montgomery, D. C. (2009). Statistical Quality Control-A Modern Introduction, John Whiley & Sons. Inc., New York.
[15] Quesenberry, C. P. (1991c). SPC Q charts for start-up processes and short or long runs. Journal of Quality Technology, 23(3), 213-224.
[16] Torng, C.-C., & Lee, P.-H.(2008). ARL Performance of the Tukey's Control Chart. Communications in Statistics -Simulation and Computation, 37(9), 1904-1913. doi:10.1080/03610910802263141
[17] Torng, C.-C., Liao, H.-N., Lee, P.-H., & Wu, J.-C. (2009). Performance evaluation of a Tukey’scontrol chart in monitoring gamma distribution and short run processes.Paper presented at the Hong Kong: In Proceedings of the International MultiConference of Engineers and Computer Scientists.
[18] Tukey, J., & Brillinger, D. (1986). The collected works of John W. Tukey, philosophy and principles of data analysis 1965–1986. Volume IV: Belmont, CA: Wadsworth Advanced Books & Software.
[19] Xin, S., Li, Y., & Li, M. (2008). Quality Control Charts for log-normal distribution based on bootstrap method.Paper presented at the 2008 27th Chinese Control Conference.
[20] Zantek, P. F. (2005). Run-length distributions of Q-chart schemes. IIE Transactions, 37(11), 1037-1045. doi:10.1080/07408170500232297
[21] Zantek, P. F. (2006). Design of Cumulative Sum Schemes for Start-Up Processes and Short Runs. Journal of Quality Technology, 38(4), 365-375.
[22] Zantek, P. F. (2008). A Markov-chain method for computing the run-length distribution of the self-starting cumulative sum scheme. Journal of Statistical Computation and Simulation, 78(5), 463-473. doi:10.1080/00949650601146562
[23] Zhang, L., Chen, G., & Castagliola, P. (2009). On t and EWMA t charts for monitoring changes in the process mean. Quality and Reliability Engineering International, 25(8), 933-945.