[1] http://www.mohw.gov.tw/CHT/DOS/DisplayStatisticFile.aspx?d=56041
[2] http://tcr.cph.ntu.edu.tw/uploadimages/Y98-ALL.pdf
[3]Chen, C. L., &Concejero, A. M. (2010). Liver transplantation for hepatocellular carcinoma in the world: the Taiwan experience. Journal of hepato-biliary-pancreatic sciences, 17(5), 555-558.
[4] Adams, D. H., Sanchez-Fueyo, A., & Samuel, D. (2015). From immunosuppression to tolerance. Journal of Hepatology, 62(1), S170-S185.
[5] Bathgate, A. J., Hynd, P., Sommerville, D., & Hayes, P. C. (1999). The prediction of acute cellular rejection in orthotopic liver transplantation. Liver Transplantation and Surgery, 5(6), 475-479.
[6] Hillman, K. M., Bristow, P. J., Chey, T., Daffurn, K., Jacques, T., Norman, S. L., ... & Simmons, G. (2002). Duration of life-threatening antecedents prior to intensive care admission. Intensive care medicine, 28(11), 1629-1634.
[7] Goldhill, D. R., Worthington, L., Mulcahy, A., Tarling, M., & Sumner, A. (1999). The patient-at-risk team: identifying and managing seriously ill ward patients. ANAESTHESIA-LONDON-, 54, 853-860.
[8] Goldhill, D. R., White, S. A., & Sumner, A. (1999). Physiological values and procedures in the 24 h before ICU admission from the ward. Anaesthesia, 54(6), 529-534.
[9] Dogan, S., &Turkoglu, I. (2008). Diagnosing hyperlipidemia using association rules. Mathematical and Computational Applications, 13(3), 193-202.
[10] McGloin, H., Adam, S. K., & Singer, M. (1998). Unexpected deaths and referrals to intensive care of patients on general wards. Are some cases potentially avoidable?. Journal of the Royal College of Physicians of London, 33(3), 255-259.
[11] Subbe, C. P., Kruger, M., Rutherford, P., &Gemmel, L. (2001). Validation of a modified Early Warning Score in medical admissions. QJM: An International Journal of Medicine, 94(10), 521-526.
[12] McArthur‐Rouse, F. (2001). Critical care outreach services and early warning scoring systems: a review of the literature. Journal of advanced nursing, 36(5), 696-704.
[13] McQuillan, P., Pilkington, S., Allan, A., Taylor, B., Short, A., Morgan, G., ... & Smith, G. (1998). Confidential inquiry into quality of care before admission to intensive care. Bmj, 316(7148), 1853-1858.
[14] 陳德煊(2015)。建構肝臟移植病患術後急性排斥反應預警模型(碩士論文)[15] McArthur‐Rouse, F. (2001). Critical care outreach services and early warning scoring systems: a review of the literature. Journal of advanced nursing, 36(5), 696-704.
[16] Duncan, H., Hutchison, J., &Parshuram, C. S. (2006). The Pediatric Early Warning System score: a severity of illness score to predict urgent medical need in hospitalized children. Journal of critical care, 21(3), 271-278.
[17] Zhang, W., Ma, D., & Yao, W. (2014). Medical Diagnosis Data Mining Based on Improved Apriori Algorithm. Journal of Networks, 9(5), 1339-1345.
[18] Tarassenko, L., Hann, A., & Young, D. (2006). Integrated monitoring and analysis for early warning of patient deterioration. British journal of anaesthesia,97(1), 64-68.
[19] Quarterman, C. P. J., Thomas, A. N., McKenna, M., & McNamee, R. (2005). Use of a patient information system to audit the introduction of modified early warning scoring. Journal of evaluation in clinical practice, 11(2), 133-138.
[20] Wiesner, R. H., Demetris, A. J., Belle, S. H., Seaberg, E. C., Lake, J. R., Zetterman, R. K., ... & Detre, K. M. (1998). Acute hepatic allograft rejection: incidence, risk factors, and impact on outcome. Hepatology, 28(3), 638-645.
[21] Wang, Y. C., Wu, T. J., Wu, T. H., Lee, C. F., Chou, H. S., Chan, K. M., & Lee, W. C. (2012, March). The risk factors to predict acute rejection in liver transplantation. In Transplantation proceedings (Vol. 44, No. 2, pp. 526-528). Elsevier.
[22] Melvin, D. G., Niranjan, M., Prager, R. W., Trull, A. K., & Hughes, V. F. (1997, September). Neurocomputing applications in post-operative liver transplant monitoring. In Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop (pp. 216-225). IEEE.
[23] Melvin, D. G., Niranjan, M., Prager, R. W., Trull, A. K., & Hughes, V. F. (2000). Neuro-computing versus linear statistical techniques applied to liver transplant monitoring: a comparative study. IEEE transactions on biomedical engineering, 47(8), 1036-1043.
[24] Chiu, K. W., Chen, Y. S., de Villa, V. H., Wang, C. C., Eng, H. L., Wang, S. H., ... & Chen, C. L. (2005). Characterizes of Liver Enzymes on Living Related Liver Transplantation Patients with Acute Rejection. Hepato-gastroenterology,52, 1825-1827.
[25] Rodríguez‐Perálvarez, M., Germani, G., Tsochatzis, E., Rolando, N., Luong, T. V., Dhillon, A. P., ... & Burroughs, A. K. (2012). Predicting severity and clinical course of acute rejection after liver transplantation using blood eosinophil count. Transplant International, 25(5), 555-563.
[26] Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc..
[27] Jiawei, H., & Kamber, M. (2001). Data mining: concepts and techniques. San Francisco, CA, itd: Morgan Kaufmann, 5.
[28] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
[29] Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques.
[30] Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The elements of statistical learning (pp. 485-585). Springer New York.
[31] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
[32] Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In Acm sigmod record (Vol. 22, No. 2, pp. 207-216). ACM.
[33] Safavian, S. R., & Landgrebe, D. A. (1990, May). Predictive Density Approach To Parametric Classification. In Geoscience and Remote Sensing Symposium, 1990. IGARSS'90.'Remote Sensing Science for the Nineties'., 10th Annual International (pp. 2367-2370). IEEE.
[34] Rokach, L., & Maimon, O. (2014). Data mining with decision trees: theory and applications. World scientific.
[35] JRQuinlan, C4.5: Programs for Machine Learning, MorgenKaufmann, San Francisco,
1993
[36] Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
[37] Cios, K. J., & William Moore, G. (2002). Uniqueness of medical data mining.Artificial intelligence in medicine, 26(1), 1-24.
[38] Alghamdi, A. S. A. (2011). Efficient Implementation of FP Growth Algorithm-Data Mining on Medical Data. International Journal of Computer Science and Network Security, 11(12), 7-16.
[39] Huang, M. J., Chen, M. Y., & Lee, S. C. (2007). Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis. Expert systems with applications, 32(3), 856-867.
[40] Kaur, H., & Wasan, S. K. (2006). Empirical study on applications of data mining techniques in healthcare. Journal of Computer science, 2(2), 194-200.
[41] Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications, 17(8), 43-48.
[42] Doddi, Achla Marathe, SS Ravi, David C. Torney, S. (2001). Discovery of association rules in medical data. Medical informatics and the Internet in medicine, 26(1), 25-33.
[43] Creighton, C., & Hanash, S. (2003). Mining gene expression databases for association rules. Bioinformatics, 19(1), 79-86.
[44] Li, J., Fu, A. W. C., He, H., Chen, J., Jin, H., McAullay, D., ... & Kelman, C. (2005, August). Mining risk patterns in medical data. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (pp. 770-775). ACM.
[45] Nahar, J., Imam, T., Tickle, K. S., & Chen, Y. P. P. (2013). Association rule mining to detect factors which contribute to heart disease in males and females. Expert Systems with Applications, 40(4), 1086-1093.
[46] Tanner, L., Schreiber, M., Low, J. G., Ong, A., Tolfvenstam, T., Lai, Y. L., ...&Ooi, E. E. (2008). Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS neglected tropical diseases,2(3), e196.
[47] Lewis, R. J. (2000, May). An introduction to classification and regression tree (CART) analysis. In Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (pp. 1-14).
[48] Vlahou, A., Schorge, J. O., Gregory, B. W., & Coleman, R. L. (2003). Diagnosis of ovarian cancer using decision tree classification of mass spectral data. BioMed Research
[49] Badriyah, T., Briggs, J. S., Meredith, P., Jarvis, S. W., Schmidt, P. E., Featherstone, P. I., ... & Smith, G. B. (2014). Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS).Resuscitation, 85(3), 418-423.
[50] Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1), 1-6.
[51] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
[52] Elkan, C. (2001, August). The foundations of cost-sensitive learning. In International joint conference on artificial intelligence (Vol. 17, No. 1, pp. 973-978). Lawrence Erlbaum Associates Ltd.
[53] Kubat, M., & Matwin, S. (1997, July). Addressing the curse of imbalanced training sets: one-sided selection. In ICML (Vol. 97, pp. 179-186).
[54] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
[55] Liu, X. Y., Wu, J., & Zhou, Z. H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539-550.
[56] Japkowicz, N. (2000, June). The class imbalance problem: Significance and
strategies. In Proc. of the Int’l Conf. on Artificial Intelligence.
[57] Candy, J. C., & Temes, G. C. (1991, May). Oversampling methods for data conversion. In Communications, Computers and Signal Processing, 1991., IEEE Pacific Rim Conference on (pp. 498-502). IEEE.
[58] Ferri, C., Flach, P., & Hernández-Orallo, J. (2002, July). Learning decision trees using the area under the ROC curve. In ICML (Vol. 2, pp. 139-146).