|
1 衛生福利部國民健康署:乳癌防治。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=205&pid=1124。(2017)。 2 Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 1160-1167, doi:10.1200/JCO.2008.18.1370 (2009). 3 Gumireddy, K. et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nature communications 7, 10715, doi:10.1038/ncomms10715 (2016). 4 Tominaga, K. et al. Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells. Oncogene 36, 1276-1286, doi:10.1038/onc.2016.293 (2017). 5 Cassetta, L. & Pollard, J. W. Repolarizing macrophages improves breast cancer therapy. Cell research, doi:10.1038/cr.2017.63 (2017). 6 Miao, Y. et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Scientific reports 7, 41942, doi:10.1038/srep41942 (2017). 7 Magnani, L. et al. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nature genetics 49, 444-450, doi:10.1038/ng.3773 (2017). 8 De Cola, A. et al. miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell death & disease 6, e1823, doi:10.1038/cddis.2015.192 (2015). 9 Chen, T. et al. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell research 22, 248-258, doi:10.1038/cr.2011.109 (2012). 10 Lin, C. et al. CGI-99 promotes breast cancer metastasis via autocrine interleukin-6 signaling. Oncogene, doi:10.1038/onc.2016.525 (2017). 11 Mitra, A., Mishra, L. & Li, S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 6, 10697-10711, doi:10.18632/oncotarget.4037 (2015). 12 Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518-524, doi:10.1038/nature03799 (2005). 13 Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005-1009, doi:10.1038/nature08021 (2009). 14 Lu, X., Lu, X. & Kang, Y. Organ-specific enhancement of metastasis by spontaneous ploidy duplication and cell size enlargement. Cell research 20, 1012-1022, doi:10.1038/cr.2010.93 (2010). 15 Walsh, L. A. et al. RECK controls breast cancer metastasis by modulating a convergent, STAT3-dependent neoangiogenic switch. Oncogene 34, 2189-2203, doi:10.1038/onc.2014.175 (2015). 16 Liu, H. et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America 107, 18115-18120, doi:10.1073/pnas.1006732107 (2010). 17 Bockhorn, J. et al. Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models. Cancer research 74, 7406-7417, doi:10.1158/0008-5472.CAN-14-1188 (2014). 18 Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751, doi:10.1038/onc.2010.215 (2010). 19 Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715, doi:10.1016/j.cell.2008.03.027 (2008). 20 Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature cell biology 11, 1487-1495, doi:10.1038/ncb1998 (2009). 21 Witta, S. E. et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer research 66, 944-950, doi:10.1158/0008-5472.CAN-05-1988 (2006). 22 Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer cell 10, 515-527, doi:10.1016/j.ccr.2006.10.008 (2006). 23 Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute 100, 672-679, doi:10.1093/jnci/djn123 (2008). 24 Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 3, Article3, doi:10.2202/1544-6115.1027 (2004). 25 Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic acids research 31, e15 (2003). 26 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27-30 (2000). 27 Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25, 25-29, doi:10.1038/75556 (2000). 28 von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399-403, doi:10.1038/nature750 (2002). 29 Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627, doi:10.1038/35001009 (2000). 30 Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173-1178, doi:10.1038/nature04209 (2005). 31 Vidal, M. & Fields, S. The yeast two-hybrid assay: still finding connections after 25 years. Nature methods 11, 1203-1206 (2014). 32 Gingras, A. C., Gstaiger, M., Raught, B. & Aebersold, R. Analysis of protein complexes using mass spectrometry. Nature reviews. Molecular cell biology 8, 645-654, doi:10.1038/nrm2208 (2007). 33 Gstaiger, M. & Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nature reviews. Genetics 10, 617-627, doi:10.1038/nrg2633 (2009). 34 Morris, J. H. et al. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nature protocols 9, 2539-2554, doi:10.1038/nprot.2014.164 (2014). 35 Gerber, D., Maerkl, S. J. & Quake, S. R. An in vitro microfluidic approach to generating protein-interaction networks. Nature methods 6, 71-74, doi:10.1038/nmeth.1289 (2009). 36 Selbach, M. & Mann, M. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nature methods 3, 981-983, doi:10.1038/nmeth972 (2006). 37 Aranda, B. et al. The IntAct molecular interaction database in 2010. Nucleic acids research 38, D525-531, doi:10.1093/nar/gkp878 (2010). 38 Xenarios, I. et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research 30, 303-305 (2002). 39 Ceol, A. et al. MINT, the molecular interaction database: 2009 update. Nucleic acids research 38, D532-539, doi:10.1093/nar/gkp983 (2010). 40 Stark, C. et al. The BioGRID Interaction Database: 2011 update. Nucleic acids research 39, D698-704, doi:10.1093/nar/gkq1116 (2011). 41 Mewes, H. W. et al. MIPS: analysis and annotation of genome information in 2007. Nucleic acids research 36, D196-201, doi:10.1093/nar/gkm980 (2008). 42 Chen, Y. C., Lo, Y. S., Hsu, W. C. & Yang, J. M. 3D-partner: a web server to infer interacting partners and binding models. Nucleic acids research 35, W561-567, doi:10.1093/nar/gkm346 (2007). 43 Chen, C. C., Lin, C. Y., Lo, Y. S. & Yang, J. M. PPISearch: a web server for searching homologous protein-protein interactions across multiple species. Nucleic acids research 37, W369-375, doi:10.1093/nar/gkp309 (2009). 44 Lin, C. Y., Lin, Y. W., Yu, S. W., Lo, Y. S. & Yang, J. M. MoNetFamily: a web server to infer homologous modules and module-module interaction networks in vertebrates. Nucleic acids research 40, W263-270, doi:10.1093/nar/gks541 (2012). 45 Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews. Molecular cell biology 7, 131-142, doi:10.1038/nrm1835 (2006). 46 Depowski, P. L., Rosenthal, S. I. & Ross, J. S. Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 14, 672-676, doi:10.1038/modpathol.3880371 (2001). 47 Yan, L. X. et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. International journal of oncology 48, 471-484, doi:10.3892/ijo.2015.3287 (2016). 48 Lin, Y. et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3beta/CTNNB1 signaling pathway. Scientific reports 5, 8997, doi:10.1038/srep08997 (2015). 49 Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature reviews. Cancer 10, 842-857, doi:10.1038/nrc2960 (2010). 50 Bigot, P. et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nature communications 7, 12098, doi:10.1038/ncomms12098 (2016). 51 Yuan, L. M. et al. Inter-isoform Hetero-dimerization of Human UDP-Glucuronosyltransferases (UGTs) 1A1, 1A9, and 2B7 and Impacts on Glucuronidation Activity. Scientific reports 6, 34450, doi:10.1038/srep34450 (2016). 52 Dellinger, R. W., Matundan, H. H., Ahmed, A. S., Duong, P. H. & Meyskens, F. L., Jr. Anti-cancer drugs elicit re-expression of UDP-glucuronosyltransferases in melanoma cells. PloS one 7, e47696, doi:10.1371/journal.pone.0047696 (2012). 53 Lu, L. et al. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PloS one 10, e0127524, doi:10.1371/journal.pone.0127524 (2015). 54 Rae, J. M. et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. Journal of the National Cancer Institute 104, 452-460, doi:10.1093/jnci/djs126 (2012).
|