跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖閔
研究生(外文):Wang, Sheng-Min
論文名稱:腔內梳狀濾波器輔助高重複率混合鎖模摻鉺光纖雷射之雷射動力學
論文名稱(外文):Laser Dynamics of High Repetition Rate Hybrid Mode-Locked Er-doped Fiber Lasers with Intra-Cavity Comb Filtering
指導教授:賴暎杰
指導教授(外文):Lai, Yinchieh
口試委員:謝文峰李柏璁陳永富施宙聰張宏鈞黃承彬
口試委員(外文):Hsieh, Wen-FengLee, Po-TsungChen, Yung-FuShy, Jow-TsongChang, Hung-ChunHuang, Chen-Bin
口試日期:2017-06-19
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:90
中文關鍵詞:鎖模光纖雷射數值模擬高重複率鎖模雷射超快雷射摻鉺光纖雷射
外文關鍵詞:mode-locked fiber lasernumerical simulationultra-high repetition rate mode-locked laserultrafast laserEr-doped fiber laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中我們從實驗和理論上研究三種腔內梳狀濾波器輔助之高重複率鎖模光纖雷射,包含雙折射光纖濾波器輔助混合鎖模摻鉺光纖雷射、低Q值Fabry-Pérot etalon輔助混合鎖模摻鉺光纖雷射和高Q值Fabry-Pérot etalon輔助混合鎖模摻鉺光纖雷射,利用適當長度之非線性光纖以及梳狀濾波器,透過四波混頻效應和非線性偏振旋轉效應可以達成100 GHz以上之脈衝重複頻率。

在雙折射光纖濾波器輔助混合鎖模摻鉺光纖雷射的部分,我們成功利用7.7公尺之偏振保持光纖產生100 GHz之梳狀濾波效應,配合10 GHz - 25 GHz之相位調變產生重複率高達100 GHz - 400 GHz的burst-mode主被動混合鎖模,並且發現一種類似約分諧波鎖模之現象可以僅僅透過改變200 kHz左右之相位調變頻率,即可使burst-mode主被動混合鎖模之重複頻率在100 GHz和300 GHz之間轉換。在理論上我們利用distributed master equation來模擬此雷射在一般主被動混合鎖模操作態和倍頻鎖模操作態。

在低Q值Fabry-Pérot etalon輔助混合鎖模摻鉺光纖雷射的部分,我們在雷射共振腔內加入finesse = 6之Fabry-Pérot etalon成功在被動鎖模之下產生100 GHz均勻脈衝序列,在主被動混合鎖模之下產生100 GHz burst-mode鎖模,並在此狀態之下研究相位調變強度對於burst pulse的波包寬度之影響,發現burst pulse的波包寬度與相位調變強度二次根號成反比。在理論上利用distributed master equation來驗證實驗結果,在波包寬度對相位調變強度之關係、光譜寬度、雷射頻率分量線寬、脈衝寬度上皆得到與實驗一樣的趨勢,並發現相位調變訊號須加上線性延遲(頻率微調)才能產生穩定鎖模狀態。

在高Q值Fabry-Pérot etalon輔助混合鎖模摻鉺光纖雷射的部分,使用finesse = 100之Fabry-Pérot etalon成功在被動鎖模以及主被動混和鎖模之下產生100 GHz的脈衝序列,並發現在此雷射中相位調變可以提升脈衝序列自相關的對比度。實驗上利用適當強度的相位調變成功提升3.4 dB 的脈衝序列自相關對比度,有助於產生較高品質的高重複率光源。
In this dissertation we have experimentally and theoretically investigated 3 kinds of intra-cavity comb filter assisted high repetition rate mode-locked lasers. The inserted comb filters include the birefringence filter, the low-Q Fabry-Pérot etalon, and the high-Q Fabry-Pérot etalon. By utilizing the highly nonlinear fiber and comb filter, stable mode-locking with the repetition rate up to 100 GHz can be achieved along with the induced four wave mixing effect and the nonlinear polarization rotation effect.

In the birefringence filter assisted hybrid mode-locked Er-doped fiber laser, 100 GHz - 400 GHz burst-mode hybrid mode-locking has been successfully demonstrated by using 10 GHz - 25 GHz phase modulation and a section of 7.7 m polarization-maintaining fiber that acts as a 100 GHz birefringence filter. A new effect analogous to rational harmonic mode-locking has also been discovered, with which the operation state of the laser can be switched between the 100 GHz and 300 GHz burst-mode mode-locking states by merely detuning the modulation frequency around 200 kHz. In simulation, the distributed master equation model is used to investigate the operation of the laser under the hybrid mode-locking state and the repetition rate multiplied mode-locking state.

In the low-Q Fabry-Pérot etalon assisted hybrid mode-locked Er-doped fiber laser, 100 GHz passive mode-locking and 100 GHz burst-mode hybrid mode-locking have been generated by inserting an etalon with the finesse of 6. The dependence of the burst envelope width and the phase modulation depth is found to follow the relationship of inverse square root. The distributed master equation model is used to reveal the underlying physical mechanisms and confirm the observed experimental results. The tendency of most laser characteristics are consistent with the experimental results. In particular, the requirement of modulation frequency detuning for achieving stable burst-mode hybrid mode-locking is clarified.

In the high-Q Fabry-Pérot etalon assisted hybrid mode-locked Er-doped fiber laser, 100 GHz pulse trains are generated under pure passive mode-locking and hybrid mode-locking by using a high-Q etalon with the finesse of 100. It is found that the phase modulation can enhance the auto-correlation contrast of the pulse train by 3.4 dB compared with the pure passive mode-locking case. Better mode-locked pulse trains at high repetition rates can be generated.
摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES V
LIST OF TABLES X
CHAPTER 1. INTRODUCTION 1
1.1. OVERVIEW OF HIGH REPETITION RATE FIBER LASERS 1
1.2. MOTIVATION OF THE RESEARCH 3
1.3. ORGANIZATION OF THE DISSERTATION 4
1.4. REFERENCES 5
CHAPTER 2. THEORY OF HYBRID MODE-LOCKED FIBER LASERS WITH COMB FILTERING 9
2.1. ACTIVE MODE-LOCKING WITH PHASE MODULATION 9
2.2. COMB FILTERS 13
2.2.1. Birefringence filter 13
2.2.2. Etalon 17
2.3. RATIONAL HARMONIC MODE-LOCKING AND REPETITION RATE MULTIPLICATION 19
2.4. NUMERICAL MODEL AND SIMULATION 24
2.4.1. Master equation 24
2.4.2. Split-step Fourier method 26
2.5. REFERENCES 29
CHAPTER 3. CHARACTERISTICS OF HYBRID MODE-LOCKED FIBER LASERS WITH COMB FILTERING 33
3.1. HYBRID MODE-LOCKED ER-DOPED FIBER LASER WITH A BIREFRINGENCE FILTER 33
3.1.1. Laser setup 33
3.1.2. Laser operation states 36
3.1.3. Operation state transition 41
3.1.4. Numerical simulation 43
3.2. HYBRID MODE-LOCKED ER-DOPED FIBER LASER WITH AN AIR-SPACED LOW-Q ETALON 50
3.2.1. Laser setup 50
3.2.2. Laser operation states 52
3.2.3. Numerical simulation 56
3.3. HYBRID MODE-LOCKED ER-DOPED FIBER LASER WITH AN AIR-SPACED HIGH-Q ETALON 65
3.3.1. Laser setup 66
3.3.2. Laser operation states 68
3.3.3. Numerical simulation 74
3.4. REFERENCES 80
CHAPTER 4. CONCLUSION AND FUTURE WORK 81
4.1. UNIQUE CHARACTERISTICS OF HYBRID MODE-LOCKED FIBER LASERS WITH COMB FILTERING 81
4.1.1. Hybrid mode-locking with birefringence filter 81
4.1.2. Hybrid mode-locking with low-Q etalon 82
4.1.3. Hybrid mode-locking with high-Q etalon 83
4.1.4. Summary of the studied lasers with different comb filters 84
4.2. FUTURE WORK 84
4.3. REFERENCES 87
PUBLICATION LIST 89
1. J. D. Kafka, D. W. Hall, and T. Baer, "Mode-locked erbium-doped fiber laser with soliton pulse shaping," Optics Letters 14, 1269-1271 (1989).
2. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, " Low-noise erbium-doped fibre amplifier operating at 1.54 μm," Electron. Lett. 23, 1026-1028 (1987).
3. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000).
4. O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, and M. Pessa, "1.5-µm monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser," Optics Letters 28, 364-366 (2003).
5. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol. 22, 51-56 (2004).
6. A. Martinez, and Z. Sun, "Nanotube and graphene saturable absorbers for fibre lasers," Nat Photon 7, 842-845 (2013).
7. E. P. Ippen, H. A. Haus, and L. Y. Liu, " Additive pulse mode-locking," J. Opt. Soc. Am. B-Opt. Phys. 6, 1736-1745 (1989).
8. F. Ö. Ilday, F. W. Wise, and T. Sosnowski, "High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror," Optics Letters 27, 1531-1533 (2002).
9. I. N. Duling, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Optics Letters 16, 539-541 (1991).
10. C. Hou-Ren, L. Kuei-Huei, T. Chih-Ya, W. Hsiao-Hua, W. Chih-Hsuan, C. Chieh-Han, C. Yu-Chieh, L. Gong-Ru, and H. Wen-Feng, "12 GHz passive harmonic mode-locking in a 1.06 mum semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration," Optics Letters 38, 845-847 (2013).
11. A. B. Grudinin, and S. Gray, "Passive harmonic mode locking in soliton fiber lasers," J. Opt. Soc. Am. B 14, 144-154 (1997).
12. M. Nakazawa, E. Yoshida, and Y. Kimura, "Ultrastable harmonically and regeneratively mode-locked polarisation-maintaining erbium fibre ring laser," Electron. Lett. 30, 1603-1605 (1994).
13. M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, "Harmonically mode-locked fiber laser with an acousto-optic modulator in a Sagnac loop and Faraday rotating mirror cavity," Opt. Commun. 149, 312-316 (1998).
14. M. Margalit, C. X. Yu, S. Namiki, E. P. Ippen, and H. A. Haus, "Harmonic mode-locking using regenerative phase modulation," IEEE Photonics Technol. Lett. 10, 337-339 (1998).
15. E. Yoshida, and M. Nakazawa, "80~200GHz erbium doped fibre laser using a rational harmonic mode-locking technique," Electron. Lett. 32, 1370-1372 (1996).
16. C. M. Wu, and N. K. Dutta, "High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser," IEEE J. Quantum Electron. 36, 145-150 (2000).
17. S. S. Jyu, G. H. Jiang, and Y. C. Lai, "Laser dynamics of asynchronous rational harmonic mode-locked fiber soliton lasers," Laser Phys. 23, 6 (2013).
18. M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, "External fibre laser based pulse amplitude equalisation scheme for rational harmonic modelocking in a ring-type fibre laser," Electron. Lett. 34, 182-184 (1998).
19. M.-Y. Jeon, H. K. Lee, J. T. Ahn, K. H. Kim, D. S. Lim, and E.-H. Lee, "Pulse-amplitude-equalized output from a rational harmonic mode-locked fiber laser," Optics Letters 23, 855-857 (1998).
20. H. J. Lee, K. Kim, and H. G. Kim, "Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror," Opt. Commun. 160, 51-56 (1999).
21. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, "Observation of bound states of solitons in a passively mode-locked fiber laser," Phys. Rev. A 64, 3 (2001).
22. N. H. Seong, and D. Y. Kim, "Experimental observation of stable bound solitons in a figure-eight fiber laser," Optics Letters 27, 1321-1323 (2002).
23. B. Ortac, A. Hideur, M. Brunel, C. Chedot, J. Limpert, A. Tunnermann, and F. O. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006).
24. Z. Wang, L. Zhan, A. Majeed, and Z. Zou, "Harmonic mode locking of bound solitons," Optics Letters 40, 1065-1068 (2015).
25. D. Y. Tang, L. M. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Opt. Express 13, 2289-2294 (2005).
26. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, "Bunch of restless vector solitons in a fiber laser with SESAM," Opt. Express 17, 8103-8108 (2009).
27. B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, "Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser," Optics Letters 35, 1578-1580 (2010).
28. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser," Phys. Rev. Lett. 108, 233901 (2012).
29. W. W. Hsiang, C. Y. Lin, and Y. C. Lai, "Stable new bound soliton pairs in a 10 GHz hybrid frequency modulation mode-locked Er-fiber laser," Optics Letters 31, 1627-1629 (2006).
30. N. D. Nguyen, and L. N. Binh, "Generation of high order multi-bound solitons and propagation in optical fibers," Opt. Commun. 282, 2394-2406 (2009).
31. C. J. Luo, S. M. Wang, and Y. Lai, "Bound soliton fiber laser mode-locking without saturable absorption effect," IEEE Photonics J. 8, 1-9 (2016).
32. A. K. Dmitry, G. Regina, O. Z. Igor, and G. O. Oleg, "Analysis of steady bound soliton-state attributes in hybrid mode-locked fiber laser," Laser Physics Letters 13, 105103 (2016).
33. J. D. McKinney, S. Dongsun, D. E. Leaird, and A. M. Weiner, "Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping," J. Lightwave Technol. 21, 3020-3028 (2003).
34. J. W. Shi, J. W. Lin, C. B. Huang, F. M. Kuo, N. W. Chen, C. L. Pan, and J. E. Bowers, "Photonic generation of few-cycle millimeter-wave pulse using a waveguide-based photonic-transmitter-mixer," IEEE Photonics J. 4, 1071-1079 (2012).
35. L. M. Zhao, D. Y. Tang, and D. Liu, "Ultrahigh-repetition-rate bound-soliton fiber laser," Appl. Phys. B-Lasers Opt. 99, 441-447 (2010).
36. E. Yoshida, and M. Nakazawa, "Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser," Optics Letters 22, 1409-1411 (1997).
37. S. M. Zhang, F. Y. Lu, X. Y. Dong, P. Shum, X. F. Yang, X. Q. Zhou, Y. D. Gong, and C. Lu, "Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser," Optics Letters 30, 2852-2854 (2005).
38. J. Schroder, T. D. Vo, and B. J. Eggleton, "Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz," Optics Letters 34, 3902-3904 (2009).
39. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Demonstration of a stable ultrafast laser based on a nonlinear microcavity," Nat. Commun. 3, 6 (2012).
40. S. S. Jyu, L. G. Yang, C. Y. Wong, C. H. Yeh, C. W. Chow, H. K. Tsang, and Y. Lai, "250-GHz passive harmonic mode-locked Er-doped fiber laser by dissipative four-wave mixing with silicon-based micro-ring," IEEE Photonics J. 5, 7 (2013).
41. L. G.Yang, S. S. Jyu, C. C. Chow, C. H. Yeh, C. Y. Wong, H. K. Tsang, and Y. Lai, "A 110 GHz passive mode-locked fiber laser based on a nonlinear silicon-micro-ring-resonator," Laser Physics Letters 11, 065101 (2014).
42. W. W. Hsiang, H. C. Chang, and Y. Lai, "Laser dynamics of a 10 GHz 0.55 ps asynchronously harmonic modelocked Er-doped fiber soliton laser," IEEE J. Quantum Electron. 46, 292-299 (2010).
43. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B-Lasers Opt. 65, 277-294 (1997).
44. M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, "Characterization of ultrashort pulse formation in passively mode-locked fiber lasers," IEEE J. Quantum Electron. 28, 720-728 (1992).
45. M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, "Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber," Optics Letters 18, 894-896 (1993).
46. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electron. Lett. 28, 1391-1393 (1992).
47. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995).
48. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Optics Letters 22, 316-318 (1997).
49. N. J. Doran, and D. Wood, "Nonlinear-optical loop mirror," Optics Letters 13, 56-58 (1988).
50. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, "Nonlinear amplifying loop mirror," Optics Letters 15, 752-754 (1990).
51. W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, "Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors," Optics Letters 22, 1150-1152 (1997).
52. M. E. Fermann, L. Turi, M. Hofer, F. Haberl, and A. J. Schmidt, "Additive-pulse-compression mode locking of a neodymium fiber laser," Optics Letters 16, 244-246 (1991).
53. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber," Optics Letters 17, 505-507 (1992).
54. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano 4, 803-810 (2010).
55. W. W. Hsiang, C. Y. Lin, M. F. Tien, and Y. C. Lai, "Direct generation of a 10 GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous phase modulation," Optics Letters 30, 2493-2495 (2005).
56. C. R. Doerr, H. A. Haus, and E. P. Ippen, "Asynchronous soliton mode-locking," Optics Letters 19, 1958-1960 (1994).
57. W. W. Hsiang, C. Y. Lin, N. K. Sooi, and Y. C. Lai, "Long-term stabilization of a 10 GHz 0.8 ps asynchronously mode-locked Er-fiber soliton laser by deviation-frequency locking," Opt. Express 14, 1822-1828 (2006).
58. H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996).
59. S. M. Wang, S. S. Jyu, W. W. Hsiang, and Y. Lai, "Asynchronous harmonic mode locking in an all-normal dispersion Yb-doped fiber laser," IEEE Photonics J. 5, 7 (2013).
60. B. Lyot, "Optical apparatus with wide field using interference of polarized light," CR Acad. Sci.(Paris) 197, 1593 (1933).
61. I. Šolc, "Birefringent chain filters," J. Opt. Soc. Am. 55, 621-625 (1965).
62. G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, "Tunable birefringent filters - optimal iterative design," Opt. Express 10, 1534-1541 (2002).
63. K. Ozgoren, and F. O. Ilday, "All-fiber all-normal dispersion laser with a fiber-based Lyot filter," Optics Letters 35, 1296-1298 (2010).
64. A. Perot, and C. Fabry, "On the application of interference phenomena to the solution of various problems of spectroscopy and metrology," Astrophysical Journal 9, 87 (1899).
65. W. Jun Shan, J. Goldhar, and G. L. Burdge, "Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Pérot filters," J. Lightwave Technol. 15, 1171-1180 (1997).
66. K. S. Abedin, M. Hyodo, and N. Onodera, "Active stabilization of a higher-order mode-locked fiber laser operating at a pulse-repetition rate of 154 GHz," Optics Letters 26, 151-153 (2001).
67. J. Davila-Rodriguez, I. T. Ozdur, M. Bagnell, P. J. Delfyett, J. J. Plant, and P. W. Juodawlkis, "Ultralow noise, etalon stabilized, 10-GHz optical frequency comb based on an SCOW amplifier," IEEE Photonics Technol. Lett. 24, 2159-2162 (2012).
68. Z. J. Yan, C. B. Mou, Z. X. Zhang, X. C. Wang, J. F. Li, K. M. Zhou, and L. Zhang, "Single Polarization, Dual wavelength fiber laser based on a 3-stage all fiber Lyot filter," IEEE Photonics Technol. Lett. 26, 1085-1088 (2014).
69. S. M. Wang, S.-S. Jyu, and Y. Lai, "300 GHz bound pulse generation in a filter-assisted harmonic mode-locked Er-doped fiber laser with 20 GHz phase modulation," in Conference on Lasers and Electro-Optics (CLEO)(Optical Society of America, San Jose, California, 2014), STu1N.4.
70. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
71. M. Becker, D. Kuizenga, and A. Siegman, "Harmonic mode locking of the Nd:YAG laser," IEEE J. Quantum Electron. 8, 687-693 (1972).
72. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode-locking," J. Opt. Soc. Am. B-Opt. Phys. 8, 2068-2076 (1991).
73. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).
74. H. A. Haus, and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993).
75. A. Weiner, Ultrafast Optics (Wiley, 2011).
76. F. Casas, and A. Murua, "An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications," Journal of Mathematical Physics 50, 033513 (2009).
77. S. M. Wang, and Y. Lai, "Up to 400 GHz burst-mode pulse generation from a hybrid harmonic mode-locked Er-doped fibre laser," Laser Physics Letters 14, 025102 (2017).
78. D. J. Kuizenga, and A. E. Siegman, "FM and AM mode locking of the homogeneous laser-Pt.I: theory," IEEE J. Quantum Electron. QE-6, 694-708 (1970).
79. S. M. Wang, and Y. Lai, "Generation of 100 GHz pulse train from a phase modulated hybrid mode-locked er-fiber laser with an intra-cavity etalon," in OptoElectronics and Communications Conference (OECC) held jointly with International Conference on Photonics in Switching (PS)( IEEE, Niigata, Japan, 2016), WA2-53.
80. S. S. Jyu, and Y. Lai, "Repetition frequency pulling effects in asynchronous mode-locking," Optics Letters 38, 347-349 (2013).
81. S.-Y. Wu, W.-W. Hsiang, and Y. Lai, "Synchronous-asynchronous laser mode-locking transition," Phys. Rev. A 92, 013848 (2015).
82. Y. Liu, Y. Hsu, C. W. Chow, L. G. Yang, C. H. Yeh, Y. C. Lai, and H. K. Tsang, "110 GHz hybrid mode-locked fiber laser with enhanced extinction ratio based on nonlinear silicon-on-insulator micro-ring-resonator (SOI MRR)," Laser Physics Letters 13, 035101 (2016).
83. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, "All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber," Opt. Express 16, 9429-9435 (2008).
84. J. Xu, S. Wu, J. Liu, Y. Li, J. Ren, Q. H. Yang, and P. Wang, "All-polarization-maintaining femtosecond fiber lasers using graphene oxide saturable absorber," IEEE Photonics Technol. Lett. 26, 346-348 (2014).
85. J.-B. Lecourt, C. Duterte, F. Narbonneau, D. Kinet, Y. Hernandez, and D. Giannone, "All-normal dispersion, all-fibered PM laser mode-locked by SESAM," Opt. Express 20, 11918-11923 (2012).
86. B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, "Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser," IEEE Photonics Technol. Lett. 26, 180-182 (2014).
87. T. W. Hänsch, "Nobel lecture: passion for precision," Reviews of Modern Physics 78, 1297-1309 (2006).
88. M. Nakazawa, and M. Yoshida, "Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique," Optics Letters 33, 1059-1061 (2008).
89. T. Hellwig, S. Rieger, and C. Fallnich, "Toward an all-optically stabilized frequency comb based on a mode-locked fiber laser," Opt Lett 39, 525-527 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top