跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪智皓
研究生(外文):Hung, Chih-Hao
論文名稱:利用全偏振保持光纖環和主動相位調變之10 GHz鎖模摻鉺光纖雷射及高速光波長掃頻應用
論文名稱(外文):10 GHz mode-locked Er-doped fiber laser based on an all-PM fiber loop with in-loop phase modulation and the high-speed wavelength-swept application
指導教授:賴暎杰
指導教授(外文):Lai, Yin-Chieh
口試委員:李柏璁蘇冠暐林家弘
口試委員(外文):Lee, Po-TsungSu, Kuan-WeiLin, Ja-Hon
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:98
中文關鍵詞:鎖模雷射摻鉺光纖光纖雷射光波長掃頻相位調變
外文關鍵詞:mode-locked laserEr-dopedfiber laserwavelength-sweptphase modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主要是利用全偏振保持光纖環來建構鎖模光纖雷射,所使用的增益介質為摻鉺光纖,並在光纖環裏加上相位調變器,利用相位調變器所能提供的相位調變去改變光纖環的相偏壓,如此一來也能改變光纖環的穿透率,從而成功達到主動鎖模。藉由適當選擇相位調變器的調變頻率,利用諧波鎖模技術能讓我們的雷射鎖模在10 GHz的高脈衝重覆率。我們進一步利用可電壓調控且能產生10 GHz高頻的介電質共振腔共振器 (DRO) 來作為調變訊號產生器,藉由改變共振器的調變頻率再透過雷射腔內的色散效應來改變鎖模光波長,進而製作出能夠在10 GHz高重覆率作高速掃頻的摻鉺光纖鎖模雷射,在8.5 kHz掃頻速度下掃頻範圍最大可以達到25 nm。
In this thesis work, we mainly utilize the polarization maintaining fibers for constructing the mode-locked fiber lasers. The gain fiber we use is the Er-doped fiber and an EO phase modulator is inserted into the optical fiber loop for active mode-locking. The travelling phase modulator can adjust the phase bias of the fiber loop and as a result, it can also change the fiber loop transmission. By suitably selecting the modulation frequency of the phase modulator, we successfully realize active mode-locking at the 10 GHz high repetition rate through the harmonic mode-locking technique. In addition, we use a voltage tuning dielectric resonator oscillator (DRO) as the 10 GHz signal generator to sweep the modulation frequency. We successfully achieve a 10 GHz high repetition rate mode-locked Er-doped fiber laser with high-speed optical wavelength sweeping capability. The widest sweep range is about 25 nm when the sweep rate is about 8.5 kHz.
中文摘要 i
English Abstract ii
Acknowledgement iv
List of Figures and Tables vii

Chapter 1: Introduction 1
1.1 The brief history of fiber laser 1
1.2 Motivation of the research 6
1.3 Organization of the thesis 8
Chapter 2: Principles of the laser configuration 9
2.1 Mode-locking mechanism 9
2.2 Active mode locking 11
2.2.1 Phase modulation mode-locking 12
2.2.2 Harmonic mode-locking 14
2.3 Optical loop mirror 16
2.4 The principle of dispersion-tuned wavelength-swept fiber laser 19
Chapter 3: Experimental configuration and results 22
3.1 Calibration of the device in the laser cavity 22
3.1.1 Measurement of the pump diodes and EDF 22
3.1.2 Measurement of the EO phase modulator 27
3.1.3 Measurement of the optical loop transmission 30
3.2 Optical loop mirror with an EO phase modulator 35
3.2.1 Experimental setup 35
3.2.2 Harmonic mode-locking 39
3.2.3 Mode-locking wavelength shift through modulation frequency tuning 55
3.3 Calibration of the dielectric resonator oscillator (DRO) 57
3.3.1 Experimental setup 57
3.3.2 Voltage tuning characteristics of the DRO 58
3.3.3 Combination of the DC and AC voltages through an analog adder circuit 62
3.4 Wavelength-swept mode-locking with a voltage tuning DRO 65
3.4.1 Experimental setup 65
3.4.2 Wavelength-swept with a 12 nm tuning range 67
3.4.3 Wavelength-swept with a 20 nm tuning range 70
3.4.4 Wavelength-swept with a 25 nm tuning range 72
3.4.5 Reduction of the relaxation oscillation effect 77
Chapter 4: Conclusions 90
4.1 Summary of achievements 90
4.2 Future work 92
Reference 93
[1] E. Snitzer, "Optical Maser Action of Nd+3 in a Barium Crown Glass," Physical Review Letters, vol. 7, pp. 444-446, 1961.
[2] S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. Laming, "Fabrication and characterization of low-loss optical fibers containing rare-earth ions," Journal of Lightwave Technology, vol. 4, pp. 870-876, 1986.
[3] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, "Low-noise erbium-doped fibre amplifier operating at 1.54µm," Electronics Letters, vol. 23, pp. 1026-1028, 1987.
[4] M. W. Phillips, A. I. Ferguson, and D. C. Hanna, "Frequency-modulation mode locking of a Nd3+-doped fiber laser," Optics Letters, vol. 14, pp. 219-221, 1989.
[5] G. P. Agrawal, “Self-phase modulation,” in Nonlinear Fiber Optics, 4th ed. Burlington, MA, USA: Elsevier, pp. 1–20, 2007.
[6] R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon., vol. 2, pp. 219–225, Apr. 2008.
[7] C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nature Photon., vol. 7, pp. 875–882, Nov. 2013.
[8] J. M. R¨amer, F. Ospaid, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett., vol. 103, no. 2, pp. 021119, Jul. 2013.
[9] E. P. Ippen, C. V. Shank, and A. Dienes, “Pasive mode locking of cw dye laser,” Appl. Phys. Lett., vol. 21, no. 8, pp. 348-350, 1972.
[10] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 um,“ Electronics Letters, vol. 23, no. 19, pp. 1026-1028, 1987.
[11] S. Y. Set, H. Yaguchi, Y. Tanaka, andM. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 1, pp. 137–146, Jan./Feb. 2004.
[12] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Functional Mater., vol. 19, no. 19, pp. 3077–3083, Oct. 2009.
[13] R. Khazaeizhad, S. H. Kassani, H. Jeong, D.-I. Yeom, and K. Oh, “Modelocking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes,” Opt. Exp., vol. 22, no. 19, pp. 23732–23742, Sep. 2014.
[14] D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua,W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep., vol. 5, no. 7965, Jan. 2015.
[15] M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror.” Optic letters, vol. 15, No. 13, July 1, 1990.
[16] I. N. Duling, “Subpicosecond all-fibre Erbium laser,”Electronics Letters, vol. 27, no. 6, pp. 544-55, 1991.
[17] M. Erkintalo, C. Aguergaray, A. Runge, "Environmentally stable all-PM all-fiber giant chirp oscillator." Optics express, vol. 20, no. 20, pp. 22669-22674, 2012
[18] C. Aguergaray, N. G. Broderick, M. Erkintalo, J. S. and V. Kruglov,"Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror." Optics express, vol. 20, no. 10, pp. 10545-10551, 2012.
[19] Y. Nakazaki, and S. Yamashita, "Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing." Optics express, vol. 17, no. 10, pp. 8310-8318, 2009.
[20] Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express, vol. 21, no. 4, pp. 5130-5139, 2013.
[21] Y. Takubo, T. Shirahata, and S. Yamashita, “Optimization of a dispersion-tuned wavelength-swept fiber laser for optical coherence tomography,” Applied Optics, vol. 55, PP. 7749-7755, 2016.
[22] K. Hotate and Z. He, “Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing,” J. Lightwave Technol, vol. 24, pp. 2541–2557, 2006.
[23] J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. Lam and C. Lu, "Active mode locking of tunable multi-wavelength fiber ring laser." Optics Communications, vol. 191, no. 3, pp. 341-345, 2001.
[24] R. S. Tucker, G. Eisenstein, and I. P. Kaminow. "10 GHz active mode-locking of a 1.3 μm ridge-waveguide laser in an optical-fibre cavity." Electronics Letters, vol. 19, no. 14, pp. 552-553, 1983.
[25] E. Yoshida, N. Shimizu, and M. Nakazawa. "A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm." IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1587-1589, 1999.
[26] J. S. Wey, J. Goldhar, and G. L. Burdge. "Active harmonic mode locking of an erbium fiber laser with intracavity Fabry-Perot filters." Journal of lightwave technology, vol. 15, no. 7, pp. 1171-1180, 1997.
[27] N. J. Doran and David Wood, “Nonlinear-optical loop mirror,” Optics Letters, vol. 12, no. 1, pp. 56-58 1987.
[28] A. D. Kersey, M. A. Davis, H. J. Patrick, et al., “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, no. 8, pp.
1442–1462, 1997.
[29] J. Park, Y. S. Kwon, M. O. Ko, M. Y. Jeon, "Dynamic fiber Bragg grating strain sensor interrogation based on resonance Fourier domain mode-locked fiber laser." Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP), IEEE, 2016.
[30] M. Y. Jeon, J. W. Park, and M. O. Ko. "Wavelength-swept laser based on semiconductor optical amplifier for dynamic optical fiber sensors." Laser Optics (LO), 2016 International Conference. IEEE, 2016.
[31] Y. Takubo, T. Shirahata, and S. Yamashita. "Optimization of a dispersion-tuned wavelength-swept fiber laser for optical coherence tomography." Applied Optics, vol. 55, no. 27, pp. 7749-7755, 2016.
[32] D. C. Adler, Y. Chen, R.Huber, J. Schmitt, J. Connolly, and J. G.Fujimoto, “Three-dimensional endomicroscopy using opticalcoherence tomography,” Nature Photonics, vol. 1, no. 12, pp.709–716, 2007.
[33] Y. Nakazaki, and S. Yamashita. "Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing." Optics express, vol. 17, no. 10, pp. 8310-8318, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊