跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔家宏
研究生(外文):Gong, Jia-Hong
論文名稱:低淨色散100 GHz次皮秒級主被動混合光固子鎖模摻鉺光纖雷射
論文名稱(外文):100 GHz Sub-picosecond Hybrid Soliton Mode-locked Erbium-doped Fiber Laser with Low Net Dispersion
指導教授:賴暎杰
指導教授(外文):Lia, Yin-chieh
口試委員:李柏璁蘇冠暐林家弘
口試委員(外文):Lee, Po-TsungSu, Kuan-WeiLin, Ja-Hon
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:低淨色散高重覆率短脈衝主被動混合鎖模光纖雷射
外文關鍵詞:Low net dispersionHigh repetition-rateShort pulseHybridMode-lockedFiber laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在本論文的研究中,我們藉由對雷射架構的色散優化以及腔外的脈衝壓縮,再透過高精細係數腔內Etalon之使用,我們架設了一個具較低淨色散值的主被動混合鎖模摻鉺光纖雷射,脈衝重複率高達100 GHz,脈衝寬度在次皮秒等級。此雷射的操作波長介於1540~1560 nm之間且操作在光固子的狀態下,而雷射的平均功率落在3~4 mW左右。當我們將雙半導體激發光源的電流開至大於500 mA時,藉由仔細調整偏振控制器,我們可以得到一重複率為100 GHz的被動鎖模脈衝序列。再加入一10 GHz附近的主動相位調變之後,我們進一步提升了鎖模的品質,得到了脈衝更乾淨、寬度更短、自相關對比度更高的鎖模脈衝序列,重複率為100 GHz而最短的脈衝寬度可達800 fs。我們對此雷射的重要特性進行了量測,包括被動與混和主被動鎖模的各種操作狀態特性。
In the thesis work, by optimizing the laser cavity net dispersion and the external pulse compression, we have successfully demonstrated a stable 100 GHz sub-picosecond hybrid mode-locked Erbium-doped fiber laser with a high-finesse intra-cavity Fabray-Perot etalon. The center wavelength of the laser is between 1540 nm and 1560 nm and the laser is mode-locked under the soliton state. In addition, the laser output average power is about 3~4 mW. When the currents of the two semiconductor pump lasers are greater than 500 mA, by carefully adjusting the polarization controllers, we can obtain a stable 100 GHz passive mode-locking pulse train. After we turn on the 10 GHz active phase modulation, we can further improve the mode-locking quality and get a clearer mode-locking pulse train with shorter pulse-width and higher auto-correlation contrast. The repetition-rate is 100 GHz and the pulse width is about 800 fs. We have measured the important lasing characteristics of the studied laser under both the passive and hybrid mode-locking cases.
Chapter 1: Introduction 1
1.1 Overview 1
1.2 Motivation 7
1.3 Organization of the thesis 9
Chapter 2: Theories 10
2.1 Polarization additive pulse mode-locking 10
2.2 Active phase modulation mode-locking 14
2.3 Soliton pulse operation state 19
2.4 Nonlinear effects 24
2.4.1 Self-phase modulation 24
2.4.2 Cross-phase modulation 28
2.4.3 Four-Wave mixing 29
Chapter 3: Experiments 31
3.1 Laser configuration 31
3.2 Dispersion optimization 35
3.3 External pulse compression 40
3.4 Experimental results 46
3.4.1 Passive mode-locking 46
3.4.2 Hybrid mode-locking 54
3.4.3 Lower frequency intensity spectrum 67
Chapter 4: Conclusions 69
4.1 Summary 69
4.2 Future works 71
References 72
[1] E. Snitzer, “Optical maser action of Nd+ 3 in a barium crown glass”, Physical review letters, Volume: 7, Issue: 12, 1961.
[2] P. W. France, “Optical fiber lasers and amplifiers”, 1991.
[3] M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiiovanni and P. B. Hansen, “1.2 ps pulse from passively mode-locked laser diode pumped Er-doped fiber ring laser”, Electronics letters, Volume: 27, Issue: 19, Page(s): 1734-1735, 1991.
[4] W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds and D. N. Payne, “Passively mode-locked Er/sup 3+/fiber laser using a semiconductor nonlinear mirror”, IEEE photonics technology letters, Volume: 5, Issue: 1, Page(s): 35-37, 1993.
[5] E. A. DeSouza, C. E. Soccolich, W. Pleibel, R. H. Stolen, M. N. Islam, J. R. Simpson and D. J. DiGiovanni, “Saturable absorber mode-locked polarization maintaining Erbium-doped fiber laser”, Electronics letters, Volume: 29, Issue: 5, Page(s): 447-449, 1993.
[6] M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober and A. J. Schmidt, “Mode-locking with cross-phase and self-phase modulation”, Optics letters, Volume: 16, Issue: 7, Page(s): 502-504, 1991.
[7] V. J. Matsas, T. P. Newson, D. J. Richardson and D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation”, Electronics letters, Volume: 28, Issue: 15, Page(s): 1391-1393, 1991.
[8] K. Tamura, H. A. Haus and E. P. Ippen, “Self-starting additive pulse mode-locked Erbium fiber ring laser”, Electronics letters, Volume: 28, Issue: 24, Page(s): 2226-2228, 1991.
[9] M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt and L. Turi, “Additive-pulse-compression mode-locking of a Neodymium fiber laser”, Optics letters, Volume: 16, Issue: 4, Page(s): 244-246, 1991.
[10] I. N. Duling III, “Sub-picosecond all-fiber Erbium laser”, Electronics letters, Volume: 27, Issue: 6, Page(s): 544-545, 1991.
[11] D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips and V. J. Matsas, “320 fs soliton generation with passively mode-locked Erbium fiber laser”, Electronics letters, Volume: 27, Issue: 9, Page(s): 730-732, 1991.
[12] E. A. DeSouza, M. C. Nuss, M. Zirngibl and C. H. Joyner, “Spectrally sliced WDM using a sing femtosecond source”, Optical fiber communications conference, Paper: PD16-1, 1995.
[13] M. C. Nuss, W. H. Knox, J. B. Stark, S. Cundiff, D. A. B. Miller and U. Koren, “Femtosecond chirped-pulse multi-frequency sources”, Ultrafast phenomena X, springer series in chemical physics, Volume: 62, Page(s): 22-23, 1996.
[14] K. Tamura, E. Yoshida and M. Nakazawa, “Supermode noise suppression in a harmonically mode-locked fiber laser by self-phase modulation and spectral filtering”, Electronics letters, Volume: 32, Issue: 5, Page(s):461, 1996.
[15] K. Tamura, E. Yoshida, E. Yamada and M. Nakazawa, “Generation of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a high-power femtosecond source”, Electronics letters, Volume: 32, Issue: 18, Page(s):1691, 1996.
[16] R. A. Barry, V. W. S. Chan, K. L. Hall, E. S. Kintzer, J. D. Moores, K. A. Rauschenbach, E. A. Swanson, L. E. Adams, C. R. Doerr, S. G. Finn, H. A. Haus, E. P. Ippen, W. S. Wong and M. Haner, “All-optical network consortium-ultrafast TDM networks”, IEEE journal on selected areas in communications, Volume: 14, Issue: 5, Page(s): 999-1013, 1996.
[17] M. Nakazawa, T. Yamamoto and K. R. Tamura, “1.28Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator”, Electronics letters, Volume: 36, Issue: 24, Page(s): 2027-2029, 2000.
[18] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection”, Science, Volume: 311, Issue: 5767, Page(s): 1595-1599, 2006.
[19] D. Zhichao, and Y. Jianping, “Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser”, IEEE transactions on microwave theory and techniques, Volume: 54, Issue: 2, Page(s): 763-767, 2006.
[20] D. J. Knuizenga and A. E. Siegman, “FM and AM mode-locking of the homogeneous laser-part I: theory”, IEEE journal of quantum electronics, Page(s): 694-708, 1970.
[21] H. Haus, J. G. Fujimoto and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode-locking”, IEEE journal of quantum electronics, Volume: 28, Issue:10, Page(s): 2086-2096, 1992.
[22] E. A. Stappaerts and W. H. Long, “Mode-locking with a slow saturable absorber in a transverse resonator”, Optics letters, Volume: 3, Issue: 6, Page(s): 226-228, 1978.
[23] J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus and E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator”, Optics letters, Volume: 14, Issues: 1, Page(s): 48-50, 1989.
[24] E. P. Ippen, H. A. Haus and L. Y. Liu, “Additive pulse mode-locking”, Journal of the optical society of America B, Volume: 6, Issues: 9, Page(s): 1736-1745, 1989.
[25] H. A. Haus, J. G. Fujimoto and E. P. Ippen, “Structures for additive pulse mode-locking”, Journal of the optical society of America B, Volume: 8, Issues: 10, Page(s): 2068-2076, 1991.
[26] R. H. Stolen, J. Botineau and A. Ashkin, “Intensity discrimination of optical pulses with birefringent filters”, Optics letters, Volume: 7, Issues: 10, Page(s): 512-514, 1982.
[27] M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober and A. J. Schmidt, “Mode-locking with cross-phase and self-phase modulation”, Optics letters, Volume: 16, Issues: 7, Page(s): 502-505, 1991.
[28] J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu and C. Lu, “Active mode-locking of tunable multi-wavelength fiber ring laser”, Optics communications, Volume: 191, Issues: 3-6, Page(s): 341-345, 2001.
[29] R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch and G. Eisenstein, “40 GHz active mode-locking in a 1.5 mu m monolithic extended-cavity laser”, Electronics letters, Volume: 25, Issue: 10, Page(s): 621-622, 1989.
[30] G. Eisenstein, R. Tucker and U. Koren, S. Korotky, “Active mode-locking characteristics of InGaAsP-single mode fiber composite cavity lasers”, IEEE journal of quantum electronics, Volume: 22, Issue: 1, Page(s): 142-148, 1986.
[31] M. C. Chan, “Hybrid mode-locking Er-doped fiber laser”, Institute of electro-optical engineering in national Chiao-Tung university, Master thesis, 2002.
[32] H. R. Chen, C. Y. Tsai, C. Y. Chang, K. H. Lin, C. S. Chang and W. F. Hsieh, “Investigation of graphene dispersion from Kelly sideband in stable mode-locked Erbium-doped fiber laser by few-layer graphene saturable absorbers”, Journal of lightwave technology, Volume: 33, Issue: 21, Page(s): 4406-4412, 2015.
[33] Y. H. Lin and G. R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles”, Laser physics letters, Volume: 10, Issue: 4, 2013.
[34] T. Honda, Y. Wang and S. Yamashit, “Dispersion management in nanotube mode-locked, compact linear-cavity fiber laser”, Lasers and electro-optics pacific rim, Paper: 26A3_2, 2015.
[35] F. Shimizu, “Frequency broadening in liquids by a short light pulse”, Physical review letters, Volume: 19, Page(s): 1097-1100, 1967.
[36] G. P. Agrawal, “Modulation instability induced by cross-phase modulation”, Physical review letters, Volume: 59, Issue: 8, Page(s): 880-883, 1987.
[37] R. J. Essiambre, B. Mikkelsen and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems”, Electronics letters, Volume: 35, Issue: 18, Page(s): 1576-1578, 1999.
[38] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity”, Physical review letters, Volume: 55, Issue: 22-25, 1985.
[39] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy”, Science 19, Volume: 322, Issue: 5909, Page(s): 1857-1861, 2008.
[40] D. Ricard, P. Roussignol and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids”, Optics letters, Volume: 10, Issue: 10, Page(s): 511-513, 1985.
[41] I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, J. A. Andrade-Lucio, A. Díez and M. Andrés, “Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber”, Optics express, Volume: 22, Issue: 24, Page(s): 30234-30250, 2014.
[42] S. S. Lin, S. K. Hwang and J. M. Liu, “Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses”, Optics express, Volume: 22, Issue: 4, Page(s): 4152-4160, 2014.
[43] I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres”, Optics express, Volume: 24, Issue: 3, Page(s): 2513-2526, 2016.
[44] M. Duran-Sanchez, R. I. Alvarez-Tamayo, O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, A. Barcelata-Pinzon, D. Velasco-Nicolas and M. Espinosa-Martinez, “Ring cavity fiber laser tunable by Sagnac interferometer operation”, Latin America optics and photonics conference, Paper: LM4A.8, 2014.
[45] I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk and S. K. Turitsyn, “Numerical modeling of fiber lasers with long and ultra-long ring cavity”, Optical society of America, Volume: 21, Issue: 10, Page(s): 12942-12950, 2013.
[46] D. Michel, F. Xiao and K. Alameh, “MEMS-based tunable linear-cavity fiber laser”, IEEE photonics journal, Volume: 4, Issue: 3, Page(s): 895, 2012.
[47] M. Nakazawa, T. Yamamoto and K.R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator”, Electronics letters, Volume: 36, Issue: 24, Page(s): 2027-2029, 2000.
[48] K. Zhou, D. Zhou, F. Dong and N. Q. Ngo, “Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback”, Optics letters, Volume: 28, Issue: 11, Page(s): 893-895, 2003.
[49] C. Lin, H. Kogelnik and L. G. Cohen, “Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3–1.7-μm spectral region”, Optics letters, Volume: 5, Issue: 11, Page(s): 476-478, 1980.
[50] A. Chong, J. Buckley, W. Renninger and F. Wise, “All-normal-dispersion femtosecond fiber laser”, Optics express, Volume: 14, Issue: 21, Page(s): 10095-10100, 2006.
[51] S. Yamashita, Y. Nakazaki, R. Konishi and O. Kusakari, “Wide and fast wavelength-swept fiber laser based on dispersion tuning for dynamic sensing”, Journal of sensors, Volume: 2009, Article ID: 572835, 2009.
[52] D. E. Spence, P. N. Kean and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser”, Optics letters, Volume: 16, Issue: 1, Page(s): 42-44, 1991.
[53] F. W. Wise, A. Chong and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion”, Laser & Photonics reviews, Volume: 2, Issue: 1-2, Page(s): 58-73, 2008.
[54] K. Kieu, W. H. Renninger, A. Chong and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser”, Optics letters, Volume: 34, Issue: 5, Page(s): 593-595, 2009.
[55] H. A. Haus, K. Tamura, L. E. Nelson and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment”, IEEE journal of quantum electronics, Volume: 31, Issue: 3, Page(s): 591-598, 1995.
[56] D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips and V. J. Matsas, “320 fs soliton generation with passively mode-locked Erbium fibre laser”, Electronics letters, Volume: 27, Issue: 9, Page(s): 730-732, 1991.
[57] Y. G. Han, T. V. A. Tran and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber”, Optics letters, Volume: 31, Issue: 6, Page(s): 697-699, 2006.
[58] S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser”, Journal of the optical society of America B, Volume: 24, Issue: 8, Page(s): 1729-1738, 2007.
[59] N. Shibata, R. Braun and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber”, IEEE journal of quantum electronics, Volume: 23, Issue: 7, Page(s): 1205-1210, 1987.
[60] M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi and A. V. Lehman, “An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element”, IEEE photonics technology letters, Volume: 2, Issue: 11, Page(s): 787-789, 1990.
[61] S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen”, Electronics letters, Volume: 32, Issue: 14, Page(s): 1298-1299, 1996.
[62] X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu and J. Zhang, “Single-longitudinal-mode Erbium-doped fiber ring laser based on High finesse fiber Bragg grating Fabry–PÉrot etalon”, IEEE photonics technology letters, Volume: 20, Issue: 12, Page(s): 976-978, 2008.
[63] S. M. Wang, S. S. Jyu and Y. Lai, “300 GHz bound pulse generation in a filter-assisted harmonic mode-locked Er-doped fiber laser with 20 GHz phase modulation”, Lasers and electro-optics, 2014.
[64] J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth”, IEEE photonics technology letters, Volume: 18, Issue: 17, Page(s): 1813-1815, 2006.
[65] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm”, Journal of lightwave technology, Volume: 22, Issue: 1, Page(s): 57-62, 2004.
[66] C. R. S. Fludger, V. Handerek and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers”, Journal of lightwave technology, Volume: 19, Issue: 8, Page(s): 1140, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊