跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/15 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸柔
研究生(外文):Chen, Yi-Rou
論文名稱:以數值模擬分析布拉格反射層對氮化鎵 垂直共振腔面射型雷射之影響暨結構優化設計
論文名稱(外文):Analysis and numerical simulation of the effect of distributed Bragg reflector and structure optimization for GaN-based vertical-cavity surface emitting lasers
指導教授:郭浩中郭浩中引用關係陳瓊華陳瓊華引用關係
指導教授(外文):Kuo, Hao-ChungChen, Chyong-Hua
口試委員:李柏璁施閔雄黃建璋
口試委員(外文):Lee, Po-TsungShih, Min-HsiungHuang, Jian-Jang
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:氮化鎵面射型雷射
外文關鍵詞:GaNVCSEL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鎵材料系統由於發光波長涵蓋整個可見光光譜、以及直接能隙的特性,未來有許多有潛力的產品應用。而垂直共振腔面射型雷射由於其低能耗、圓形光斑、高頻寬、及低發散角的特性,相較於邊射型雷射以及發光二極體有更大的優勢。隨著無線通訊的需求增加,傳統的wi-fi 已即將不敷使用,而使用氮化鎵材料為發光元件的可見光通訊系統在無線電波段之外開闢了另一個通訊波段,並擁有無電磁波干擾、保密性好等特性,可補足目前無線電波段之無線通訊所無法滿足應用的場合。因此在未來氮化鎵垂直共振腔面射型雷射的發展更是令人期待。

於本論文中,我們藉由模擬軟體Photonic Integrated Circuit Simulator in 3D (PICS3D)進行理論計算,探討多層量子井的層數、分佈式布拉格反射鏡的層數、以及透明電流傳輸層的厚度,對於氮化鎵垂直共振腔雷射所造成的閾值電流以及輸出光強度的影響,並且改善傳統結構、取得最佳輸出特性的元件結構,使得氮化鎵垂直共振腔面射型雷射,擁有低閾值電流、高輸出效率的特性。
The GaN-based material system features high emission efficiency with the characteristic of direct-bandgap, whose emission wavelength can cover overall visible light spectrum by tuning alloy composition. The advantages enable these materials have many potential applications. On the other hand, compared to edge-emitting laser and light-emitting diode, vertical-cavity surface-emitting lasers have the superiority of low power consumption, circular beam shape, high modulation response, and low divergence angle. Recently, the wireless communication is in high demand, but the use of radio frequency spectrum is getting saturation. Accordingly, visible light communication (VLC) system, where the visible light wavelength region is still not fully used for communication, ease the situation. Accordingly, the development of GaN-based VCSEL is expected.

In this thesis, the theoretical simulation (Photonic Integrated Circuit Simulator in 3D (PICS3D)) is conducted to optimize the performance of GaN-based VCSELs. We are going to discuss about the effects caused from the well number of multi-quantum well, the pair number of the distributed Bragg reflector, and the thickness of the transparent current spreading layer, including threshold current and output power. After improving the traditional device structure, the optimized GaN-based VCSEL device is achieved, which features low threshold current and high slope efficiency.
摘要 i
Abstract ii
致謝 iii
Content iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 2
1.1 Free-space optical communication 2
1.2 GaN-based vertical cavity surface emitting lasers 2
1.3 The state-of-the-art of electrical pumped GaN-based VCSELs 5
1.4 Organization of the thesis 6
Chapter 2. GaN-based VCSEL theoretical backgrounds 7
2.1 Basic principle of lasers 7
2.1.1 The three basic of lasers 7
2.1.2 Process of light emission 8
2.1.3 Population inversion and light amplification 9
2.1.4 Standing wave of resonance cavity 10
2.2 Basic VCSEL structure and properties 11
2.2.1 Distributed Bragg reflector (DBR) 13
2.2.2 Radiative recombination and non-radiative recombination 15
2.2.3 Multi-quantum well (MQW) structure 17
2.2.4 Optical confinement factor 18
2.2.5 Threshold condition 20
2.2.6 Basic output power versus current characteristics 22
2.2.7 Current crowding effect and transparent current spreading layer 24
Chapter 3. Experiment setup 25
3.1 Numerical simulation 25
3.2 Power-current measurement 28
Chapter 4. Structure optimization and top DBR design 29
4.1 GaN-based VCSEL structure design 29
4.2 Design of the well number of multi-quantum well 31
4.3 Reflectivity of different DBR pair number 33
4.4 Design of the number of top DBR pairs for lower threshold current and higher slope efficiency 35
4.5 Design of indium-tin-oxide layer thickness 38
Chapter 5. Conclusion and future work 43
Reference 47
[1] J. Vučić et al., "230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs," in Optical Fiber Communication Conference, San Diego, California, 2010, p. OThH3: Optical Society of America.
[2] C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, "Improved modulation speed of LED visible light communication system integrated to main electricity network," Electronics Letters, vol. 47, no. 15, pp. 867-868Available: http://digital-library.theiet.org/content/journals/10.1049/el.2011.0422
[3] C. Yeh, Y. Liu, C. Chow, Y. Liu, P. Huang, and H. Tsang, "Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system," Optics Express, vol. 20, no. 15, pp. 16218-16223, 2012.
[4] Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, "Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems," Optics express, vol. 20, no. 4, pp. 4564-4573, 2012.
[5] F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, and K. Huang, "3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation," in Optical Fiber Communication Conference, 2013, p. OTh1G. 4: Optical Society of America.
[6] W.-Y. Lin et al., "10m/500Mbps WDM visible light communication systems," Optics express, vol. 20, no. 9, pp. 9919-9924, 2012.
[7] H. Le Minh et al., "100-Mb/s NRZ visible light communications using a postequalized white LED," IEEE Photonics Technology Letters, vol. 21, no. 15, pp. 1063-1065, 2009.
[8] I. Vurgaftman and J. R. Meyer, "Electron Bandstructure Parameters," in Nitride Semiconductor Devices: Principles and Simulation: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 13-48.
[9] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, no. 7A, p. L797, 1995.
[10] S. Nakamura et al., "Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes," Applied Physics Letters, vol. 69, no. 26, pp. 4056-4058, 1996.
[11] R. Michalzik, "VCSELs: A research review," in VCSELs: Springer, 2013, pp. 3-18.
[12] S.-C. Wang, T.-C. Lu, H.-C. Kuo, and J.-R. Chen, "GaN-Based VCSELs," in VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, R. Michalzik, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 403-427.
[13] S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, "Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth," Applied Physics Express, vol. 8, no. 6, p. 062702, 2015.
[14] Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, "Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection," Applied physics express, vol. 1, no. 12, p. 121102, 2008.
[15] G. Huang et al., "Crack-free Ga N∕ Al N distributed Bragg reflectors incorporated with Ga N∕ Al N superlattices grown by metalorganic chemical vapor deposition," Applied physics letters, vol. 88, no. 6, p. 061904, 2006.
[16] T.-C. Lu et al., "Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature," Applied Physics Letters, vol. 97, no. 7, p. 071114, 2010.
[17] G. Cosendey, A. Castiglia, G. Rossbach, J.-F. Carlin, and N. Grandjean, "Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate," Applied Physics Letters, vol. 101, no. 15, p. 151113, 2012.
[18] S. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes," Science, vol. 281, no. 5379, pp. 956-961, 1998.
[19] S. Nakamura et al., "Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime," Applied physics letters, vol. 70, no. 7, pp. 868-870, 1997.
[20] T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Applied Physics Letters, vol. 92, no. 14, p. 141102, 2008.
[21] T.-C. Lu et al., "Development of GaN-based Vertical-cavity Surface-emitting lasers," IEEE Journal of selected topics in quantum electronics, vol. 15, no. 3, pp. 850-860, 2009.
[22] W.-J. Liu, X.-L. Hu, L.-Y. Ying, J.-Y. Zhang, and B.-P. Zhang, "Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers," Applied Physics Letters, vol. 104, no. 25, p. 251116, 2014.
[23] A. Einstein, "Strahlungs-Emission und -Absorption nach der Quantentheorie," Deutsche Physikalische Gesellschaft. Verhandlungen 18, vol. 6, no. 34, p. 363, 1916.
[24] K. Iga and H. Li, Vertical-cavity surface-emitting laser devices. Springer, 2003.
[25] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 2007.
[26] J.-F. Seurin et al., "High-power high-efficiency 2D VCSEL arrays," in Proc. SPIE, 2008, vol. 6908, p. 690808.
[27] S.-C. Wang et al., "Optically pumped GaN-based vertical cavity surface emitting lasers: Technology and characteristics," Japanese Journal of Applied Physics, vol. 46, no. 8S, p. 5397, 2007.
[28] J. M. Redwing, D. A. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting laser," Applied physics letters, vol. 69, no. 1, pp. 1-3, 1996.
[29] Y.-K. Song et al., "A vertical cavity light emitting InGaN quantum well heterostructure," Applied physics letters, vol. 74, no. 23, pp. 3441-3443, 1999.
[30] T. Someya, K. Tachibana, J. Lee, T. Kamiya, and Y. Arakawa, "Lasing emission from an In0. 1Ga0. 9N vertical cavity surface emitting laser," Japanese journal of applied physics, vol. 37, no. 12A, p. L1424, 1998.
[31] I. Fritz and T. Drummond, "AlN-GaN quarter-wave reflector stack grown by gas-source MBE on (100) GaAs," Electronics letters, vol. 31, no. 1, pp. 68-69, 1995.
[32] H. Ng, D. Doppalapudi, E. Iliopoulos, and T. Moustakas, "Distributed Bragg reflectors based on AlN/GaN multilayers," Applied physics letters, vol. 74, no. 7, pp. 1036-1038, 1999.
[33] H. Ng, T. Moustakas, and S. Chu, "High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy," Applied Physics Letters, vol. 76, no. 20, pp. 2818-2820, 2000.
[34] T. Someya, R. Werner, A. Forchel, and Y. Arakawa, "Growth and structural characterization of InGaN vertical cavity surface emitting lasers operating at room temperature," physica status solidi (a), vol. 176, no. 1, pp. 63-66, 1999.
[35] T. Sakaguchi, T. H. A. Katsube, F. Koyama, and K. Iga, "MgO/Si02 Dielectric Multilayer Reflectors Formed by Electron-Beam Evaporation for GaN Surface Emitting Semiconductor Lasers," in Proceedings of the Topical Workshop on III-V Nitrides: Nagoya Congress Center, Nagoya, Japan, 21-23 September 1995, 1997, p. 255: Pergamon Press.
[36] T. Honda et al., "Design and fabrication process consideration of GaN‐based surface emitting lasers," Electronics and Communications in Japan (Part II: Electronics), vol. 82, no. 6, pp. 55-63, 1999.
[37] L. A. Coldren and R. S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Optical Engineering, no. 2). 1997, pp. 616-617.
[38] P. Bhattacharya, Semiconductor optoelectronic devices. Prentice-Hall, Inc., 1994, p. 535.
[39] "PICS3D User's Manual," ed, 2015.
[40] H. á. Maruska and J. Tietjen, "The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN," Applied Physics Letters, vol. 15, no. 10, pp. 327-329, 1969.
[41] W. Yim, E. Stofko, P. Zanzucchi, J. Pankove, M. Ettenberg, and S. Gilbert, "Epitaxially grown AlN and its optical band gap," Journal of Applied Physics, vol. 44, no. 1, pp. 292-296, 1973.
[42] K. Kim, W. R. Lambrecht, and B. Segall, "Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN," Physical Review B, vol. 53, no. 24, p. 16310, 1996.
[43] D. Bimberg et al., O. Madelung, Ed. Physics of Group IV Elements and III-V Compounds, 1 ed. Springer-Verlag Berlin Heidelberg, 1982.
[44] T. Tansley and C. Foley, "Optical band gap of indium nitride," Journal of Applied Physics, vol. 59, no. 9, pp. 3241-3244, 1986.
[45] A. Shikanai et al., "Biaxial strain dependence of exciton resonance energies in wurtzite GaN," Journal of Applied Physics, vol. 81, no. 1, pp. 417-424, 1997.
[46] M. Suzuki, T. Uenoyama, and A. Yanase, "First-principles calculations of effective-mass parameters of AlN and GaN," Physical Review B, vol. 52, no. 11, p. 8132, 1995.
[47] S. Nakamura, "InGaN multiquantum-well-structure laser diodes with GaN-AlGaN modulation-doped strained-layer superlattices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, no. 3, pp. 483-489, 1998.
[48] W. Chow, M. H. Crawford, A. Girndt, and S. Koch, "Threshold conditions for an ultraviolet wavelength GaN quantum-well laser," IEEE Journal of selected topics in quantum electronics, vol. 4, no. 3, pp. 514-519, 1998.
[49] M. Kumagai, S. Chuang, and H. Ando, "Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors," Physical Review B, vol. 57, no. 24, p. 15303, 1998.
[50] A. Polian, M. Grimsditch, and I. Grzegory, "Elastic constants of gallium nitride," Journal of Applied Physics, vol. 79, no. 6, pp. 3343-3344, 1996.
[51] V. Chin, T. Tansley, and T. Osotchan, "Electron mobilities in gallium, indium, and aluminum nitrides," Journal of Applied Physics, vol. 75, no. 11, pp. 7365-7372, 1994.
[52] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, "Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy," Applied Physics Letters, vol. 68, no. 18, pp. 2541-2543, 1996.
[53] J. Piprek, Z.-M. Li, R. Farrell, S. P. DenBaars, and S. Nakamura, "Electronic Properties of InGaN/GaN Vertical-Cavity Lasers," in Nitride Semiconductor Devices: Principles and Simulation: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 423-445.
[54] Y. C. Yeo, T. C. Chong, M. F. Li, and W. J. Fan, "Analysis of optical gain and threshold current density of wurtzite InGaN/GaN/AlGaN quantum well lasers," Journal of Applied Physics, vol. 84, no. 4, pp. 1813-1819, 1998.
[55] K. Chih-Chiang et al., "The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN-GaN and Ta/sub 2/O/sub 5/--SiO/sub 2/ distributed Bragg reflectors," IEEE Photonics Technology Letters, vol. 18, no. 7, pp. 877-879, 2006.
[56] L. Tien-Chang et al., "Characteristics of Current-Injected GaN-Based Vertical-Cavity Surface-Emitting Lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, pp. 1594-1602, 2011.
[57] T. A. F. König et al., "Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer," ACS Nano, vol. 8, no. 6, pp. 6182-6192, 2014/06/24 2014.
[58] H. Kim et al., "Effect of film thickness on the properties of indium tin oxide thin films," Journal of Applied Physics, vol. 88, no. 10, pp. 6021-6025, 2000.
[59] C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications. Cambridge University Press, 1999.
[60] P. Spiewak, M. Marciniak, M. Wasiak, W. Nakwaski, and R. P. Sarzala, "Analysis of Threshold Currents and Transverse Modes in Nitride VCSELs With Different Resonators," IEEE Journal of Quantum Electronics, vol. 52, no. 11, pp. 1-7, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊