跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭智元
研究生(外文):Cheng, Jhih-Yuan
論文名稱:覆載鎳奈米顆粒於二氧化鈦薄膜表面對光催化之影響
論文名稱(外文):Application of Ni-loaded TiO2 Thin Films for Photocatalysis
指導教授:林健正林健正引用關係
指導教授(外文):Lin, Chien-Cheng
口試委員:林明璋林昆霖
口試委員(外文):Lin, Ming-ChangLin, Kun-Lin
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:62
中文關鍵詞:光電流轉換效率光催化二氧化鈦奈米管
外文關鍵詞:photoconversionPhotocatalysisTiO2 nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用電弧蒸鍍、雙極式電化學沉積與陽極化處理不同製程,形成不同型態的二氧化鈦奈米薄膜,再分別進行300°C/3h氫化處理,最後再選擇最佳光催化效果之二階處理奈米管進行鎳粒子覆載研究。以XRD 或GIXRD 分析薄膜相結構、SEM/EDS觀察表面圍觀結構與成份分析、XPS 分析表面化學成份鑑定,最後再利用太陽光模擬器(AM 1.5)進行光電流轉換效率測試。
將一階陽極處理後之奈米管利用超音波震盪器將鈦管震離基板,再進行60V/1h二次陽極處理,相較於一階陽極處理試片,二階陽極處擁有表面平坦與規則排列之奈米鈦管。在光電流測試中,電弧蒸鍍、雙極式電化學沉積、一階陽極與二階陽極處理二氧化鈦奈米薄膜,經過退火處理後其光電流轉換效率分別為0.367%、0.095%、0.388% 與0.528%,若再進行300°C/3h氫化處理後其光電流轉換效率分別為0.36%、0.153%、0.62%與0.77%。僅有電弧蒸鍍二氧化鈦奈米薄膜轉換效率呈現下降,其餘皆有1.5倍以上的提升。
二階陽極處理二氧化鈦奈米管,分別浸泡於0.05%、0.1%、2%與4% 鎳還原溶液,其光電流轉換效率皆呈現下降趨勢。若再以300°C/3h氫化處理,由GIXRD 與XPS 圖譜所示,還原後鎳粒子,大部分為鎳金屬,少部分為其他鎳化合物。由SEM 觀察,浸泡於2%鎳還原溶液,奈米管表面佈滿鎳粒子,導致在光電流測試中,2% 樣品光催化效果最低。在本實驗中,覆載氧化鎳與金屬鎳於二氧化鈦奈米管表面,光電流轉換效率皆呈現下降趨勢,故鎳粒子對於二氧化鈦奈米管光裂水解研究中並無輔助效果。
In this study, TiO2 thin films were prepared by arc deposition, electrodeposition and anodization method. When TiO2 thin films were hydrogenated at 300 °C for 3 h, the photoconversion efficiency for TiO2 nanotubes was measured as 0.77 %. The TiO2 nanotubes were loaded with nickle particles. The modified TiO2 thin films have been characterized with GIXRD, SEM, EDS, XPS and AM 1.5 solar simulator.
In order to enhance the photoconversion efficiency of TiO2 nanotubes, two step growth of TiO2 nanotubes has been performed. The 1-step TiO2 nanotubes on the titanium foils formed by anodization were removed by sonicating in deionized water and then the titanium foils was anodized at 60 V/1 h for the formation of TiO2 nanotubes. The 2-step TiO2 nanotubes with more regular and highly smooth surfaces. The arc deposition, Electrodeposition, 1-step and 2-step TiO2 nanotubes showed maximum efficiencies of 0.367 %, 0.095 %, 0.388 % and 0.528 %. When arc deposition, Electrodeposition, 1-step and 2-step TiO2 nanotubes were hydrogenated at 300 °C for 3 h, the photoconversion efficiency were measured as 0.36 %, 0.153 %, 0.62 % and 0.77 %, respectively. The arc deposition TiO2 thin film was hydrogenated, which not useful for PEC water splitting. However, the photoconversion efficiency of the others films were enhanced by hydrogenation with over 1.5 times.
The 2-step TiO2 nanotubes were immersed in Ni solution with concentrations of 0.05%, 0.1%, 2% and 4% for 10 min, in order to obtain Ni nanoparticles on surface of TiO2 NTs, Ni-Loaded TiO2 NTs of the sample the process of by H2 reduction at 300 °C/3 h. The XPS pattern, Ni(OH)2, NiO and Ni, but only signal of nickel can be observed in the GIXRD pattern. Most of Nickle oxide were transformed to Nickle metal by hydrogenating. The 2% Ni-Loaded TiO2 had the lowest photoconversion efficiency, because the surface of the sample was almost covered by nickle particles in SEM image. All Ni-Loaded TiO2 nanotubes have lower efficiencies than 2-step TiO2 nanotubes. They are not useful for TiO2 nanotubes in PEC water splitting.
目錄
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 序論 1
1-1前言 1
1-2研究動機 2
第二章 原理與文獻回顧 4
2-1 二氧化鈦奈米結構 4
2-1-1 二氧化鈦(TiO2) 4
2-1-2 電化學沉積二氧化鈦薄膜 4
2-1-3 濺鍍沉積二氧化鈦薄膜 6
2-1-4 奈米鈦管 7
2-2二氧化鈦光分解水的原理 9
2-3二氧化鈦改質原理 10
2-3-1 氫化 10
2-3-2 表面金屬覆載 11
3-1 藥品與儀器 12
3-2 實驗步驟 12
3-2-1電化學沉積二氧化鈦薄膜製備 12
3-2-1-1陰極鈦片電極製作 12
3-2-1-2 陽極鉑電極製作 13
3-2-1-3 電化學陰極沉積溶液配置 13
3-2-1-4 電化學陰極沉積 13
3-2-2電弧蒸鍍二氧化鈦薄膜製備 14
3-2-3二氧化鈦奈米管製備 14
3-2-3-1陽極鈦片電極製作 14
3-2-3-2 陽極鉑電極製作 14
3-2-3-3陽極化處理電解液配製 15
3-2-3-4 一階陽極處理二氧化鈦奈米管製備 15
3-2-3-5 二階陽極處理二氧化鈦奈米管製備 15
3-2-4氫化二氧化鈦奈米管製備 16
3-2-5鎳金屬覆載於二氧化鈦奈米管表面製備 16
3-2-5 水裂解效率量測 17
3-3 儀器簡介 19
3-3-1 X-ray 繞射分析(X-ray diffraction, XRD) 19
3-3-2 熱場發式電子顯微鏡 19
3-3-3 歐傑微探能譜儀 20
第四章 結果討論 21
4-1電化學沉積二氧化鈦薄膜 21
4-2電弧蒸鍍二氧化鈦薄膜 22
4-3一階與二階陽極處理之二氧化鈦奈米管 24
4-4 二氧化鈦薄膜光電流轉換效率比較 26
4-5 鎳金屬粒子覆載二氧化鈦奈米管 26
第五章 結論 29
1. 愛心世界季刊,冬季號011期 (2010).
2. Green MA;Keevers MJ;Thomas I;Lasich JB;Emery K;King RR, 2015, "40% efficient sunlight to electricity conversion," Progress in Photovoltaics: Research and Applications, 23 685-691 (2015).
3. M. L. Perry and T. F. Fuller, "A Historical Perspective of Fuel Cell Technology in the 20th Century," Journal of The Electrochemical Society, 149[7] S59-S67 (2002).
4. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, "Review of the proton exchange membranes for fuel cell applications," International Journal of Hydrogen Energy, 35[17] 9349–9384 (2010).
5. AKIRA FUJISHIMA and KENICHI HONDA, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-38 (1972).
6. Chanjuan Zhao, Bo Feng, Yiting Li, Jing Tan, Xiong Lu, Jie Weng, "Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light," Applied Surface Science, 280 8-14 (2013).
7. Tong Zhu and Shang-Peng Gao, "The stability, electronic structure, and optical property of TiO2 polymorphs," J. Phys. Chem. C, 118[21] 11385-11396 (2014).
8. T.-T. Wang, P. Raghunath, Y.-G. Lin, M. C. Lin, "A Synergistic Effect of Hydrogenation and Thiocyanate Treatments on Ag-loaded TiO2 Nanoparticles for Solar-to-Hydrogen Conversion," J. Phys. Chem. C, 121 [18] 9681–9690 (2017).
9. M. Nazli NAIM, Masahiko KUWATA, Hidehiro KAMIYA and I. Wuled LENGGORO, "Deposition of TiO2 nanoparticles in surfactant-containing aqueous suspension by a pulsed DC charging-mode electrophoresis," Journal of the Ceramic Society of Japan, 117[1] 127-132 (2009).
10. Ana M. Peiro´, Enric Brillas, Jose´ Peral, Xavier Dome`nech and Jose´ A. Ayllo´n, "Electrochemically assisted deposition of titanium dioxide on
aluminium cathodes," J. Mater. Chem, 12 2769-2773 (2002).
11. Jason Bandy, Qifeng Zhang, Guozhong Cao, "Electrophoretic Deposition of Titanium Oxide Nanoparticle Films for Dye-Sensitized Solar Cell Applications, " Materials Sciences and Applications, 2 1427-1431 (2011).
12. Ching-Chun Huang, Huan-Ching Hsu, Chi-Chang Hua, Kuo-Hsin Chang, Ying-Feng Lee, "Morphology control of cathodically deposited TiO2 films," Electrochimica Acta, 55 7028-7035 (2010).
13. Chi-Chang Hu, Huan-Ching Hsu, and Kuo-Hsin Chang, "Cathodic Deposition of TiO2: Effects of H2O2 and Deposition Modes," Journal of The Electrochemical Society, 159[7] D418-D424 (2012).
14. SUMIO IIJIMA, "Helical microtubules of graphitic carbon," Nature, 354 56-58 (1991).
15. O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Appl. Phys. Lett, 72 1173 (1998).
16. Haripriya E. Prakasam, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes, "A New Benchmark for TiO2 Nanotube Array Growth by Anodization," J. Phys. Chem.C, 111 7235 (2007).
17. Ahmed El Ruby Mohamed and Sohrab Rohani, "Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review," Energy Environ. Sci, 4 1065 (2011).
18. 李鎮全, "氫化之二氧化鈦奈米管於光裂解水製氫之應用," 國立交通大學 (2012).
19. Jinliang Tao, Jianling Zhao, Chengcun Tang, Yingru Kang and Yangxian Li, "Mechanism study of self-organized TiO2 nanotube arrays by anodization," New J. Chem, 32 2164-2168 (2008).
20. Zhonghai Zhang , Md. Faruk Hossain , Takakazu Takahashi, "Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation," International journal of hydrogen energy, 35[16] 8528-8535 (2010).
21. Zhao Jin, Chang Liu, Kun Qi, and Xiaoqiang Cui, "Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst," Scientific Reports, 7:39695 (2017).
22. Michael Grätzel, " Photoelectrochemical cells," Nature, 414 338 (2001).
23. X. Chen, L. Liu, P. Yu, S. S. Mao , "Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals," Science, 331 746 (2011).
24. Zhaoke Zheng, Baibiao Huang, Jibao Lu, Zeyan Wang, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai and Myung-Hwan Whangbo, "Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity," Chem. Commun, 48 5733-5735 (2012).
25. P. Raghunath, W. F. Huang, and M. C. Lin, "Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals," J. Phys. Chem, 138 154705 (2013).
26. Shou-Yi Chang, Sih-Fan Chen, and Yi-Ching Huang, "Synthesis, Structural Correlations, and Photocatalytic Properties of TiO2 Nanotube/SnO2-Pd Nanoparticle Heterostructures," J. Phys. Chem. C, 115 1600-1607 (2011).
27. Susanta K. Mohapatra, Narasimharao Kondamudi, Subarna Banerjee, and Mano Misra, "Functionalization of Self-Organized TiO2 Nanotubes with Pd Nanoparticles for Photocatalytic Decomposition of Dyes under Solar Light Illumination," Langmuir, 24 11276-11281 (2008).
28. Jiaguo Yu, Gaopeng Dai, and Baibiao Huang, "Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays," J. Phys. Chem. C, 113 16394–16401 (2009).
29. Lan Suna, Jing Li, Chenglin Wang, Sifang Li, Yuekun Lai, Hongbo Chen, Changjian Lin, "Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity," Journal of Hazardous Materials, 171 1045-1050 (2009).
30. J.M. Macak, F. Schmidt-Stein, P. Schmuki, "Efficient oxygen reduction on layers of ordered TiO2 nanotubesloaded with Au nanoparticles," Electrochemistry Communications, 9 1783-1787 (2007).
31. Yanhua Liu, Zilong Wang, Weibo Fan, Zhongrong Geng, Libang Fengn. Chatilyan, Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight," Ceramics International, 40 3887-3893 (2014).
32. 莊宗錦, "鈷、鎳摻雜與覆載之二氧化鈦奈米粒子於光催化活性及水裂解之應用," 國立交通大學 (2015).
33. Hamed Bazrafshan, Zahra Alipour Tesieh, Saeideh Dabirnia, and Abbas Naderifar, "Low Temperature Synthesis of TiO2 Nanoparticles with High
Photocatalytic Activity and Photoelectrochemical Properties through Sol–Gel Method," Materials and Manufacturing Processes, 31 119-125, (2016).
34. Khachatur V. Manukyan, Arpi G. Avetisyan, Christopher E. Shuck, Hakob A. Chatilyan, Sergei Rouvimov, Suren L. Kharatyan, and Alexander S. Mukasyan, "Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations," J. Phys. Chem. C, 119 16131-16138 (2015).
35. Fumiaki Amano, Masashi Nakata, Akira Yamamoto and Tsunehiro Tanaka, "Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation," J. Phys. Chem. C, 120 6467-6474 (2016).
36. 張仕欣, "鎳摻雜及氫化之二氧化鈦奈米管對水裂解之影響," 國立交通大學 (2016).
37. Chung-Ching Chuang, Cheng-Kuo Lin, T. T. Wang, V. Srinivasadesikan, P. Raghunath and M. C. Lin, "Computational and experimental studies on theeffect of hydrogenation of Ni-doped TiO2 anatase nanoparticles for the application of water splitting," RSC Adv, 5 81371 (2015).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊