(54.236.58.220) 您好!臺灣時間:2021/02/28 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:左佳聰
研究生(外文):Tso, Chia-Tsung
論文名稱:溫度與摻雜濃度環繞式閘極多晶矽奈米線 無接面電晶體之特性影響研究
論文名稱(外文):Temperature and Doping Concentration Dependent Characteristics of Junctionless Gate-All-Around Nanowire Poly-Si Transistors
指導教授:許鉦宗潘扶民
指導教授(外文):Sheu,Jeng-TzongPan, Fu-Ming
口試委員:張鼎張趙天生林鶴南許鉦宗潘扶民
口試委員(外文):Chang, Ting-ChangChao , Tien-ShengLin, Heh-NanSheu, Jeng-TzongPan, Fu-Ming
口試日期:2017-07-18
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:122
中文關鍵詞:溫度關聯性摻雜濃度關聯性奈米線環繞式閘極電晶體多晶矽多通道無介面反轉模式
外文關鍵詞:Temperature dependencedoping concentration dependencenanowire (NW)gate-all-around (GAA)transistorpolycrystalline silicon (poly-Si)junctionless (JL)inversion mode (IM)multiple channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討無接面(Junctionless)環繞式閘極具多通道結構對溫度及運用摻雜濃度關聯性。簡化通道式側壁邊襯蝕刻圖案化技術(Simplified sidewall spacer patterning technique)來定義奈米線通道(Nanowire),藉由多通道方式以及再結合環繞式元件間的電特性差異閘極結構可呈現出更穩定及優異的電性。首先,針對環繞式無接面及反轉模式(Inversion mode)元件多晶矽奈米線通道在較大溫度範圍 (從液態氮氣七十七絕對溫度到四百一十絕對溫度) 研究對溫度關聯性探討,無接面元件的次臨界擺幅以及臨界電壓具有對溫度相同趨勢,但溫度高於室溫時,有明顯的轉折點.這是因為無接面元件的通道具有重摻雜, 在高溫時,通道雜質散射效應較反轉式元件來的明顯。此外,還討論了在各種溫度下具有不同摻雜濃度的無接面元件的行為。然而,當摻雜濃度達到1 × 1020cm-3時,表面電位顯示出較高的對溫度的抗擾性,並且通道中的電位能障變(barrier potential)得非常小。

其次,奈米線通道和閘極結構均由雙側壁邊襯蝕刻圖案化技術過程定義。 閘極長度可以通過氧化物硬式掩模 (Oxide hard mask) 濕式蝕刻浸漬時間進行微調,獲得約二十奈米、三十奈米和五十奈米的閘極長度元件。 此外,無接面元件的電氣特性均顯示溫度依賴性,當溫度高達高於室溫時,高溫下的雜質散射和光子散射而使得電流開狀態電流顯示溫度獨立性。

本篇論文最後,在上述三組元件包含 (一) 環繞式無接面及反轉模式元件具有一微米和點二十五微米元件閘極長度、(二) 環繞式無接面元件具有一微米和點二十五微米閘極長度在不同摻雜濃度1 × 1019cm-3、5 × 1019cm-3、1 × 1020cm-3元件、(三) 環繞式無接面元件具有二十奈米、三十奈米和五十奈米閘極長度。這些具有多個通道的多晶矽無接面元件特性也已被證明。在施加多重奈米線通道結構後,對於具有無接面元件具有一微米和點二十五微米元件閘極長度,這些器件顯示出元件與元件間特性變化變穩定以及較高的電流開關比(> 109)。而對於具有各種摻雜濃度的無接面元件具有一微米和點二十五微米元件閘極長度。摻雜濃度為1×1020 cm -3的無接面元件的臨界電壓變化比1×1019 cm -3無接面元件差,當隨著奈米線通道結構數目增加到二十奈米線, 此時電流開關比而升高到2.5×108。雖然通過多通道結構可以獲得閘極長度為二十奈米、三十奈米和五十奈米無接面元件的較小變化,二十奈米閘極長度無接面元件仍然遭受嚴重的短通道效應 (Short channel effect) ,經由穿透式電子顯微鏡(TEM)影像結構分析我們發現,由於在閘極定義的過蝕刻而造成的底切現象,此現象將造成多通道元件容易有嚴重的短通道效應, 而造成比五十奈米無接面元件更差的電特性。然而,具有五十奈米無接面元顯示出更好的閘極控制能力,而不會受到嚴重的短通道效應和溫度敏感性,表現出低功率器件和未來晶片進行三維空間垂直整合(3D IC)應用的潛力。
In this study, the temperature dependence and doping concentration of junctionless gate-all-around (GAA) devices with multiple channels were studied. The multiple poly-Si nanowire channels of ~12 nm nanowire width were prepared by a simplified sidewall spacer patterning process, and employed the GAA structure, with the device obtaining excellent electrical characteristics. First, the temperature-dependent characteristics of the GAA JL and inversion mode (IM) devices with a wide temperature range (77 to 410 K) were characterized. The JL devices showed nearly the same tendencies in subthreshold swing (S.S.) and threshold voltage (Vth) with respect to the change in temperature. There were obvious kinks at temperatures up to 300 K, due to the JL device’s heavily doped channel and the fact that the impurity scattering effect in the channel is more significant than in its IM counterpart at high temperatures. Moreover, the behavior of JL devices with different doping concentrations at various temperatures was also discussed. However, the surface potential exhibited higher immunity to temperature and the barrier potential in the channel became very small when the doping concentration reached 1 × 1020 cm-3.
Second, both NW and gate structures were defined by the double sidewall spacer patterning process. The gate length can be fine-tuned by oxide hard mask wet dipping time, with gate lengths of ~20 nm, 30 nm, and 50 nm gate obtained. Furthermore, all electrical characteristics in the JL device showed temperature dependence, with the exception of the ON status current’s temperature independence up to 300K due to the combination of impurity scattering and photon scattering at high temperature.
Finally, these poly-Si JL devices with multiple channels were also demonstrated. JL devices with dimensions of 1-m and 0.25-m with the multiple NW channel structures of 1 × 1019 cm-3 devices show small variations and a high ON/ OFF current ratio (> 109). For 1-m and 0.25-m JL devices with various doping concentrations, the variations of Vth in devices with a doping concentration of 1 × 1020 cm-3 were worse than that of 1 × 1019 cm-3 devices, while the ON/ OFF current ratio increased with the NWs increasing to 20 NWs could be achieved to ~2.5 × 108. Although a smaller variation can be obtained in JL devices with gate lengths of 20nm, 30nm, and 50 nm through the multiple channel structure, the 20 nm device still suffers from serious SCEs and shows poorer electrical characteristics than the 50 nm device due to the undercut of the gate structure. However, the JL device with 50-nm gate length shows better gate controllability without suffering serious SCEs and temperature sensitivity, and thereby exhibits good potential for being a low-power device with future 3D IC applications.
摘要 i
Abstract iii
Acknowledgement v
Contents vi
Figure Captions x
Table Captions xv

Chapter 1 1
Introduction 1
1.1 Current Trend of CMOS Technology and Future Roadmap 1
1.2 Overview of Multiple Gate Structure 2
1.3 Overview of poly-Si Thin-Film-Transistor 4
1.4 Overview of Silicon Nanowire Fabrication 5
1.5 Overview of Junctionless Transistor Device 7
1.6 Temperature Effect on Junctionless Transistor Device 9
1.6.1 Variation of Variation of Subthreshold Swing with Temperature 12
1.6.2 Variation of Threshold Voltage with Temperature
13
1.7 Doping Concentration Effect on Junctionless Transistor Device 14
1.8 Motivation 16
1.9 Thesis Organization 17
References 20

Chapter 2 28
Temperature- and doping-concentration-dependent Characteristics of Junctionless Gate-all-Around poly-Si Thin-Film-Transistors 28
2.1 Introduction 28
2.2 Junctionless and Inversion Mode Transistor 29
2.3 Experimental 32
2.3.1 Fabrication Steps of GAA poly-Si NW Thin-Film Transistor 32
2.3.2 Structure Analyses for Gate-All-Around poly-Si Junctionless Thin-Film-Transistor 34
2.3.3 Definition and Extraction of Electrical Parameters 35
2.4 Results and Discussion 37
2.4.1 Electric Characteristics of GAA JL and IM poly-Si NW Transistor Device 37
2.4.2 Temperature-dependent Characteristics of GAA JL and IM poly-Si NW Transistor Device 39
2.4.3 Doping-concentration-dependent Characteristics of GAA JL poly-Si NW Transistor Device at Various Temperatures
48
2.5 Summary 55
References 56

Chapter 3 59
Temperature Dependence of Gate-All-Around poly-Si Nanowire Junctionless Transistors with 20/30/50 nm Twin Gate
60
3.1 Introduction 60
3.2 Experiments 61
3.2.1 Fabrication Steps of GAA poly-Si NW Thin-Film Transistor with Double Spacer Patterning Technique
61
3.2.2 Structure Analyses for Gate-All-Around poly-Si Thin-Film-Transistor… 65
3.3 Results and Discussion 66
3.3.1 Characteristics of GAA JL poly-Si NW Transistor Device with Gate Length 20/30/50 nm 66
3.3.2 Temperature Dependence of GAA JL poly-Si NW Transistor Device with Gate Length 20/30/50 nm at Various Temperature Region. 68
3.3.3 Output Characteristic of GAA JL poly-Si NW Transistor Device with Gate Length 20/30/50 nm 73
3.3.4 Activation Energy of GAA JL poly-Si NW Device with Gate Length 20/30/50 nm 75
3.4 Summary 76
References 77

Chapter 4 82
Gate-All-Around poly-Si Nanowire Junctionless Thin-Film-Transistors with Multiple Channels 82
4.1 Introduction 82
4.2 Experiment 83
4.2.1 Simplified Double Spacer Patterning Technique
83
4.2.2 Fabrication of Gate-All-Around Junctionless poly-Si NW Transistor Devices 85
4.2.3 Structure Analyses for Gate-All-Around poly-Si Thin-Film-Transistor .86
4.3 Results and Discussion 89
4.3.1 Electrical Characteristics with Multiple Channels of Gate-All-Around poly-Si Junctionless with Gate Length 0.25-μm and 1-μm 89
4.3.2 Electrical Characteristics with Multiple Channels of Gate-All-Around poly-Si Junctionless LG= 0.25 μm with Various Doping Concentration. 98
4.3.3 Electrical Characteristics with Multiple Channels of Gate-All-Around poly-Si Junctionless with Gate Length 20/30/50 nm. 103
4.4 Summary 112
References 114

Chapter 5 118
5.1 Conclusion 118
5.2 Further Prospects 120
Vita 121
Publication List 122
[1.1] International Technology Roadmap for Semiconductors 2016: http://www.itrs.net
[1.2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” Solid-State Circuits, IEEE Journal of, vol. 9, no.5, pp. 256-268, Oct. 1974,
[1.3] M. Im, J. W. Han, H. Lee, L. E. Yu, S. Kim, C. H. Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J. S. Oh, Y. C. Park, H. M. Lee, and Y. K. Choi, “Multiple-gate CMOS thin-film transistor with polysilicon nanowire,” IEEE Electron Device Lett., vol. 29, no. 1, pp. 102–104, Jun. 2008.
[1.4] C. M. Lee and B. Y. Tsui, “High-performance poly-Si nanowire thin film transistors using the HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 327–329, Mar. 2011.
[1.5] T. C. Hsiao, and J. C. S. Woo, “Subthreshold characteristics of fully depleted submicrometer SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 42, no. 6, pp. 1120–1125, Jun. 1995.
[1.6] Y. Tian, R. Huang, X. Zhang, and Y. Wang, “A novel nanoscaled device concept: quasi SOI MOSFET to eliminate the potential weaknesses of UTB SOI MOSFET”, IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 561–568, Apr. 2005.
[1.7] C. H. Chou, I. C. Lee, D. C. Lei, and H. C. Cheng, “Planar junctionless poly-Si thin-film transistors with single gate and double gate,” Jpn. J. Appl. Phys., vol. 53, no. 4S, pp. 06JE07: 1–3, May 2014.
[1.8] Y. K. Choi, T. J. King, and C. Hu, “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron Device Lett., vol. 23, no. 1, pp. 25–27, Jan. 2002.
[1.9] C. W. Chang, C. K. Deng, H. R. Chang, C. L. Chang, and T. F. Lei,” A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowire Channels,” IEEE Electron Device Lett., vol. 28, no. 11, pp. 993–995, Nov. 2007.
[1.10] Y. Li, H. M. Chou, and J. W. Lee, “Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs,” IEEE Trans. Nanotechnol., vol. 4, no. 5, pp. 510–516, Sep. 2005.
[1.11] B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo, and D. L. Kwong,” Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET,”
IEEE Electron Device Lett., vol. 29, no. 7, pp. 791-794, Jul. 2008.
[1.12] H. H. Hsu, H. C. Lin, C. W. Luo, C. J. Su, and T. Y. Huang, “Impacts of multiple-gated configuration on the characteristics of poly-Si nanowire SONOS devices,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 641–649, Mar. 2011.
[1.13] C. Y. Wu, T. C. Liao, M. H. Yu, S. K. Chen, C. M. Tsai, H. C. Cheng, “Field enhancement of omega-shaped-gated poly-Si TFT SONOS memory,” Microelectron. Reliab., vol. 5, no. 50, pp. 704–708, Feb. 2010.
[1.14] S. M. Fluxrnan, “Design and performance of digital polysilicon Thin-Film-Transistor circuits on glass,” IEEE Proc.-Circuits Devices Syst., vol. 141, no. 1, pp. 57–59, Feb. 2010.
[1.15] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. vol. 53, no.2, pp. 1193–1202, Feb. 1982.
[1.16] C. M. Yang, and H. A. Atwater, “Selective solid phase crystallization for
control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett. vol. 68, no. 24, pp. 3392–3394, Jun.1996.
[1.17] C. J. Su, and H. C. Lin, “High-Performance TFTs With Si Nanowire Channels
Enhanced by Metal-Induced Lateral Crystallization,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 582-584, Jul. 2006.
[1.18] C. L. Wang, I. C. Lee, C. Y. Wu, C. H. Chou, P. Y. Yang, Y. T. Cheng, and H. C. Cheng, “High-Performance Polycrystalline-Silicon Nanowire Thin-Film Transistors With Location-Controlled Grain Boundary via Excimer Laser Crystallization,” IEEE Electron Device Lett., vol. 33, no. 11, pp.1562–1564, Nov. 2012.
[1.19] B. C. Lim, Y. J. Choi, H. J. Choi, and J. Jang, “Hydrogenated Amorphous Silicon Thin Film Transistor Fabricated on Plasma Treated Silicon Nitride,” IEEE Trans. on electron. Device, vol. 47, no. 2, pp. 367–371, Feb. 2000.
[1.20] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 Plasma
Passivation on N-Channel Polycrystalline Silicon Thin-Film Transistors”, IEEE Trans. on electron. Device, vol. 44, no. 1, pp. 64–68, Jan. 1997
[1.21] C. J. Su, T. I. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no.4, pp.521–523, Apr. 2011.
[1.22] T. C. Liao, S. W. Tu, M. H. Yu, W. K. Lin, C. C. Liu, K. J. Chang, Y. H. Tai,
and H. C. Cheng, “Novel Gate-All-Around Poly-Si TFTs With Multiple
Nanowire Channels,” IEEE Electron Device Lett., vol. 29, no. 8, pp.889–891, Aug. 2008.
[1.23] T. K. Kang, T. C. Liao, C. M. Lin, H. W. Liu, F. H. Wang, and H. C. Cheng,
“Gate-All-Around Poly-Si TFTs With Single-Crystal-Like Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no. 9, pp.1239–1241, Sept. 2011.
[1.24] T. Y. Liu, F. M. Pan, and J. T. Sheu, “Characteristics of Gate-All-Around
Junctionless Polysilicon Nanowire Transistors With Twin 20-nm Gates,” IEEE J. Electr. Dev. Soc., vol. 3, no.5, pp. 405–409, Jan. 2015.
[1.25] F. Patolsky and C. M. Lieber, “Nanowire Nanosensors,” Mater. Today, vol. 8, no. 4, pp.20–28 (2005).
[1.26] J. Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo, and D. L. Kwong,” Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 246–249, Mar. 2009.
[1.27] S. C. Chen, T. C. Chang, P.T. Liu, Y. C. Wu, P. H. Yeh, C. F. Weng, S. M. Sze, C. Y. Chang, and C. H. Lien “Nonvolatile polycrystalline silicon Thin-Film-Transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels,” Appl. Phys. Lett., vol. 90, pp. 12111:1–3, Feb 2007.
[1.28] Y. H Lu, P. Y Kuo, Y. H Wu, Y. H Chen, and T . S Chao, “Novel sub-10-nm
gate-all-around Si nanowire channel poly-Si TFTs with raised source/drain”, IEEE Electron Device Lett., vol. 32, no. 2, pp. 173–175, Feb. 2011.
[1.29] H. C. Lin, H. H. Hsu, C. J. Su, and T. Y. Huang, “A novel multiple-gate polycrystalline silicon nanowire transistor featuring an inverse-T gate,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 718–720, Jul. 2008.
[1.30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp.1289–1292, Aug. 2001.
[1.31] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory,” IEEE Electron Device Lett., vol. 28, no. 9, pp. 809–811, Sep. 207.
[1.32] P. C. Huang, L. A. Chen, and J. T. Sheu, “Electric-Field Enhancement of a Gate-All-Around Nanowire Thin-Film Transistor Memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216–218, Mar. 2010.
[1.33] M. Im, J-W Han, H. Lee, L-E Yu, S. Kim, C-H Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J Sub Oh, Yun Chang Park, H M Lee, and Y-K Choi, “Multiple-gate CMOS thin-film transistor.
[1.34] C. M. Lee, and B. Y. Tsui, “A high-performance 30-nm gate-all-around poly-Si nanowire thin-film transistor with NH3 plasma treatment”, IEEE Electron Device Lett., vol. 31, no. 7, pp. 683–685, Jul. 2010.
[1.35] M. Chen, H. Y. Yu, N. Singh, Y. Sun, N. S. Shen, X. Yuan, G. Q. Lo, and D. L. Kwong, “Vertical-Si-nanowire SONOS memory for ultrahigh-density application”, IEEE Electron Device Lett., vol. 30, no. 8, pp. 879–881, Aug. 2009.
[1.36] J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One- Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res., vol. 32, no. 5, pp.435–445, Spet. 1999.
[1.37] H. F. Yan, Y. J. Xing, b, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid- Solid Mechanism,” Chemical Physics Letters, vol. 323, pp.224–228, June (2000).
[1.38] A. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, “Solid-Phase Diffusion Mechanism for GaAs Nanowire Growth,” Nat. Mater., vol. 3, pp.677–681, Sept.2004.
[1.39] T. Y. Liu, S. C. Lo, and J. T. Sheu,“Gate-all-around single-crystal-like poly-Si nanowire TFTs with a steep-subthreshold slope,” IEEE Electron Device Lett., vol. 48, no. 5, pp. 523–525, Apr. 2013.
[1.40] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010
[1.41] C. J. Su, T. I. Tsai, Y. L. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao,
“Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels,”IEEE Electron Device Lett., vol. 32, no. 4, pp. 521–523, Apr. 2011.
[1.42] C. J. Su, T. I. Tsai, H. C. Lin, T.Y. Huang and T. S. Chao, “Low-temperature
poly-Si nanowire junctionless devices with gate-all-around TiN/Al2O3 stack structure using an implant-free technique”, Nanoscale Research Lett, no.7, pp. 339:1–6, Jul. 2012.
[1.43] H. C, Lin, C. I. Lin, and T. Y. Huang, “Characteristics of n-type junctionless
poly-Si thin-film transistors with an ultrathin channel”, IEEE Electron Device Lett., vol. 33, no. 1, pp. 53–55, Jan. 2012.
[1.44] S. Barraud, M. Berthomé, R. Coquand, M. Cassé, T. Ernst, M.-P. Samson, P.
Perreau, K. K. Bourdelle, O. Faynot, and T. Poiroux, “Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm”, IEEE Electron Device Lett., vol. 33, no. 9, pp. 1225–1227, Sep. 2012.
[1.45] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H.
Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4," Thin Solid Films, vol. 486, pp. 38–41, 2005.
[1.46] S. M. Sze and K. K. Ng, Physics of semiconductor devices: Wiley-interscience,
2006. pp. 564–565
[1.47] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981, p. 28–29.
[1.48] C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge,
“Junctionless multigate field-effect transistor,” Appl. Phys. Lett. vol. 94, pp.053511: 1–3, Mar. 2009.
[1.49] P. Aminzadeh, M. Alavi, and D. Scharfetter, “Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias,” in VLSI Symp. Tech. Dig., 1998, pp. 178–179.
[1.50] D. S. Jeon and D. E. Burk, “MOSFET inversion layer motilities—A physically based semi-empirical model for a wide temperature range,” IEEE Trans. Electron Devices, vol. 36, no. 8, pp. 1456–1463, Aug. 1989.
[1.51] C. Rustagi, N. Singh, Y. F. Lim, G. Zhang, S. Wang, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Low-Temperature Transport Characteristics and Quantum-Confinement Effects in Gate-All-Around Si-Nanowire N-MOSFET” IEEE Electron Device Lett. 28, 909 –912, Oct. 2007.
[1.52] M de Souza, MA Pavanello, RD Trevisoli, RT Doria, J Colinge “Cryogenic operation of junctionless nanowire transistors,” IEEE Electron Device Lett., vol.32, no 10. pp.1322 –1324, Oct. 2011.
[1.53] D. Y. Jeon, S. J. Park, M. Mouis, S. Barraud, G. T. Kim, and G. Ghibaudo,
“Low-temperature electrical characterization of junctionless transistors,” Solid-State Electron., vol.80, pp.135–141, Feb. 2013.
[1.54] L. Ma, W. Han, H. Wang, X. Li, and F. Yang, “Temperature dependence of electronic behaviors in n-type multiple-channel junctionless transistors,” J. Appl. Phys., vol.114, pp.124507:1–3, Sept. 2013.
[1.55] X. Li, W. Han, L. Ma, H. Wang, Y. Zhang, and F. Yang, “Low-Temperature Quantum Transport Characteristics in Single n-Channel Junctionless Nanowire Transistors,” Electron Device Lett., vol. 34, no.5, pp.581–583, May. 2013.
[1.56] J. T. Park, J. Y. Kim, C. W. Lee, and J. P. Colinge, “Low-temperature
conductance oscillations in junctionless nanowire transistors,” J. Appl. Phys., vol.97, pp. 172101:1–12, Oct. 2010.
[1.57] J. P. Colinge, W. Xiong, C. R. Cleavelin, T. Schulz, K. Schrüfer, K. Matthews, and P. Patruno, “Room-Temperature Low-Dimensional Effects in Pi-Gate SOI MOSFETs ,” IEEE Electron Device Lett., 27, pp. 775–777, Sept. 2006.
[1.58] S. M. Sze, Physics of Semiconductor Devices, 2nd ed New York: Wiley-Interscience, 1981, pp 124–125.
[1.59] D. Jiménez, B. Iñíguez, J. Suñé, L. F. Marsal, J. Pallarès, J. Roig, and D. Flores, “Continuous Analytic I–V Model for Surrounding-Gate MOSFETs, IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004
[1.60] B. C. Paz, F. Ávila-Herrera, A. Cerdeira, and M. A. Pavanello,” Double-gate junctionless transistor model including short-channel effects,” Semicond. Sci. Technol. Vol. 30, pp. 055011: 1–11, Mar. 2015.
[1.61] J. P. Colinge, "Multiple-gate soi mosfets," Solid-State Electron., vol. 48, no. 6, pp. 897–905, Jun.2004.
[1.62] B. G. Streetman and S. Banerjee, Solid state electronic devices vol. 4: Prentice Hall New Jersey, 2000. pp. 232:1–2
J. T. Sheu, P. C. Huang, T. S. Sheu, C. C. Chen, and L. A. Chen,“Characteristics of Gate-All-Around Twin Poly-Si Nanowire Thin-Film Transistors,” IEEE Electron Device Lett., vol.30, no.2, pp.139–141, Feb. 2009.
[2.2] T. Y. Liu, S. C. Lo, and J. T. Sheu, “Gate-All-Around Single-Crystal-Like Poly-Si Nanowire TFTs With a Steep-Subthreshold Slope,” IEEE Electron Device Lett. vol.34, no.4, pp.523–525, Apr. 2013.
[2.3] J. P. Colinge, A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, and P. Razavi, “Junctionless Nanowire Transistor (JNT): Properties and design guidelines,” Solid State Electron., vol.65-66, no. 5, pp. 33–37(5), Nov.-Dec. 2011.
[2.4] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-Orabi, and K. Kuhn, “Comparison of Junctionless and Conventional Trigate Transistors With Lg Down to 26 nm,” IEEE Electron Device Lett. vol.32, no. 9, pp. 1170–1172, Sept. 2011.
[2.5] J. T. Park and J. P. Colinge, “Multiple-Gate SOI MOSFETs: Device Design Guidelines,” IEEE Trans. Electron Devices, vol.49, pp. 2222–2229, Dec. 2002.
[2.6] C. T. Tso, T. Y. Liu, and J. T. Sheu, Jpn. “Gate-all-around poly-Si nanowire junctionless thin-film transistors with multiple channels,” J. Appl. Phys. vol.54, pp.06FG06: 1–3, Apr. 2015
[2.7] J. P. Colinge, C. W. Lee, and A. Afzalian, “Nanowire transistors without junctions,” Nat. Nanotechnol. vol.5, pp.225–229, Feb.2010.
[2.8] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate Transistors,” Solid-State Electron. vol.54, no. 2, pp.97–103, Feb. 2010.
[2.9] P. Singh, N. Singh, S. Member, J. Miao, W. T. Park, and D. L. Kwong, “Gate-all
–around junctionless nanowire MOSFET with improved low-frequency noise
behavior,” IEEE Electron Device Lett. vol.32, no.12, pp.1752–1754, Dec. 2011.
[2.10] J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarov, and R. T. Doria, “Reduced electric field in junctionless transistors, “ Appl. Phys. Lett. vol.96, no.7, pp.073510:1–7, Feb. 2010.
[2.11] T. Park, J. Y. Kim, and J. P. Colinge, “Negative-bias-temperature-instability and hot carrier effects in nanowire junctionless p-channel multigate transistors,” Appl. Phys. Lett. vol.100, no.8, pp.083504: 1- 4, Feb. 2012.
[2.12] C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett. vol.94, pp.053511:1–3, Mar. 2009.
[2.14] Y. C. Cheng, Y. C. Wu, H. B. Chen, M. H Han, N. H Lu, J. J. Su, and C. Y Chang, “High voltage characteristics of JL FET poly-Silicon thin film transistors,” Appl. Phys. Lett. vol.103, pp.123510:1–3, Sept. 2013.
[2.15] R. T. Doria, M. A. Pavanello, R. D. Trevisoli, M. de Souza, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, and J.P. Colinge, “Junctionless multiple-gate transistors for analog applications,” IEEE Trans. Electron Devices, vol.58, no. 8, pp.2511–2519, Aug.2011.
[2.16] M de Souza, M. A. Pavanello, R. D. Trevisoli, R. T. Doria, J. P. Colinge “Cryogenic operation of junctionless nanowire transistors,” IEEE Electron Device Lett., vol.32, no 10. pp.1322–1324, Oct. 2011.
[2.17] D. Y. Jeon, S. J. Park, M. Mouis, S. Barraud, G. T. Kim, and G. Ghibaudo, “Low-temperature electrical characterization of junctionless transistors,” Solid-State Electron., vol.80, pp.135–141, Feb. 2013.
[2.18] L. Ma, W. Han, H. Wang, X. Li, and F. Yang, “Temperature dependence of electronic behaviors in n-type multiple-channel junctionless transistors,” J. Appl. Phys., vol.114, pp.124507:1–3, Sept. 2013.
[2.19] X. Li, W. Han, L. Ma, H. Wang, Y. Zhang, and F. Yang, “Low-Temperature Quantum Transport Characteristics in Single n-Channel Junctionless Nanowire Transistors,” Electron Device Lett., vol. 34, no.5, pp.581–583, May 2013.
[2.20] J. Y, W. Seto, "The electrical properties of polycrystalline silicon films,"J. Appl. Phys., vol. 46, no.12, pp.5247–5254, Dec.1975.
[2.21] M. S Raman, T. Kifle, E. Bhattacharya, and K. N. Bhat, “Physical Model for the Resistivity and Temperature Coefficient of Resistivity in Heavily Doped Polysilicon,” IEEE Trans. Electron Devices, vol. 53, no.8, pp.1885–1892. Aug. 2008.
[2.22] Y. C. Cheng, H. B. Chen, M. H. Han, N. H. Lu, J. J Su, C. S. Shao, and Y. C. Wu, “Temperature dependence of electronic behaviors in quantum dimension junctionless thin-film transistor,” Nanoscale Research Lett., vol. 9, pp.392 – 395, 2014.
[2.23] C. J. Su, T. I. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no.4, pp.521–523, Apr. 2011.
[2.24] T. Y. Chen, I. C. Chan, P. K. Chen, P. K. Ko, and C. Hu, “Subbreakdown Drain Leakage Current in MOSFET,”, IEEE Electron Device Lett., vol. 8, no. 12, pp.515–517, Nov. 1987.
[2.25] P. A. Martin, B. G. Streetman, and K. Hess, “Electric field enhanced emission from non‐Coulombic traps in semiconductors,” J. Appl. Phys., vol. 52, no.12, pp.7409–7415, Dec. 1981.
[2.26] J. H. Schön and B. Batlogg, “Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers,” J. Appl. Phys., vol.74, no.2 pp.260–262, Jan. 1999.
[2.27] N. C. C. Lu, L. Gerzberg, and J. D. Meindl, “A new conduction model for polycrystalline silicon films,” IEEE Electron Device Lett., vol. EDL-2, no.4,
pp.95–98, Apr. 1980.
Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. S. Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. IEEE, vol.85, no.4, pp.486–504, Apr.1997.
[3.2] T. Skotnicki, G. Merckel, and T. Pedron, ““The voltage–doping transformation: A new approach to the modeling of MOSFET short-channel effects,” IEEE Electron Device Lett., vol. 9, no. 3, pp. 109–112, Mar. 1988.
[3.3] M. Masahara, Y. Liu, S. Hosokawa, T. Matsukawa, K. Ishii, H. Tanoue, K. Sakamoto, T. Sekigawa, H. Yamauchi, S. Kanemaru, and E. Suzuki, “Ultrathin Channel Vertical DG MOSFET Fabricated by Using Ion-Bombardment-Retarded Etching,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2078–2084, Dec. 2004.
[3.4] M. Im, J. W. Han, H. Lee, L. E. Yu, S. Kim, C. H. Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J. S. Oh, Y. C. Park, H. M. Lee, and Y. K. Choi,” Multiple-Gate CMOS Thin-Film Transistor With Polysilicon Nanowire,” IEEE Electron Device Lett.,vol. 29, no. 1, pp.102–105, Jan. 2008.
[3.5] V. Subramanian, “Multiple Gate Field-Effect Transistors for Future CMOS Technologies,” IETE Technical Review, vol. 27, no6. pp. 446–454, Sept. 2010.
[3.6] Y. K. Choi, T. J. King, and C. Hu, “Nanoscale CMOS Spacer FinFET for the Terabit Era,” IEEE Electron Device Lett. vol. 23, no.1 pp.25–27, Jan.2002.
[3.7] C. W. Chang, C. K. Deng, H. R. Chang, C. L. Chang, and T. F. Lei,” “A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowires Channels”, , IEEE Electron Device Lett., vol. 28, no. 11, pp. 993–995, Nov. 2007.
[3.8] Y. Li, H. M. Chou, and J. W. Lee, “Investigation of Electrical Characteristics on Surrounding-Gate and Omega-Shaped-Gate Nanowire FinFETs,” IEEE Trans. Nanotechnol., vol. 4, no. 3, pp. 510–516, Sept. 2005.
[3.9] T. K. Kang, T. C. Liao, C. M. Lin, H. W. Liu, F. H. Wang, and H. C. Cheng, “High-Performance Single-Crystal-Like Nanowire Poly-Si TFTs With Spacer Patterning Technique,” IEEE Electron Device Lett., vol.32, no.3 pp.330–332, Mar. 2011.
[3.10] C. T. Tso, T. Y. Liu, and J. T. Sheu, “Gate-all-around poly-Si nanowire junctionless thin-film transistors with multiple channels,” Jpn. J. Appl. Phys., vol.54, no. 6S1, pp.06FG06:1–3, Apr.2015.
[3.11] N. Lindert, L. Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T.-J. King, J. Bokor, and C. Hu, “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Electron Device Lett., vol.22, no.10 pp. 487–489, Oct. 2001.
[3.12] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–386, May. 2006.
[3.13] H. H. Hsu, T. W. Liu, L. Chan, C. D. Lin, T. Y. Huang, and H. C. Lin, “Fabrication and Characterization of Multiple-Gated Poly-Si Nanowire Thin-Film Transistors and Impacts of Multiple-Gate Structures on Device Fluctuations,” IEEE Trans.Electron Devices, vol.55, no. 11 pp. 3063–3069, 2008.
[3.14] H. C. Lin, W. C. Chen, C. D. Lin, and T. Y. Huang, “Performance Enhancement in Double-Gated Poly-Si Nanowire Transistors With Reduced Nanowire Channel Thickness,” IEEE Electron Device Lett., vol.30, no.6 pp. 644–646, Jun. 2009.
[3.15] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu,” Sub 50-nm FinFET: PMOS,” IEDM Tech. Dig. pp. 67–70, Jun.1999.
[3.16] C. M. Lee, and B. Y. Tsui, “A High-Performance 30-nm Gate-All-Around Poly-Si Nanowire Thin-Film Transistor With NH3 Plasma Treatment,” IEEE Electron Device Lett. vol.31, no.7, pp.683–685, Jul. 2010.
[3.17] P. Vittorio, S. Corrado, F. Guglielmo, and M. Luigi, “Two-dimensional delineation of ultrashallow junctions obtained by ion implantation and excimer laser annealing,” Appl. Phys. Lett. vol.77, no. 4, pp.552–554, Jul. 2000.
[3.18] J. P. Colinge, C. W. Lee, and A. Afzalian, “Nanowire transistors without junctions,” Nat. Nanotechnol. vol.5, pp.225–229, Feb.2010.
[3.19] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate Transistors,” Solid-State Electron. vol.54, no. 2, pp.97–103, Feb. 2010.
[3.20] P. Singh, N. Singh, S. Member, J. Miao, W. T. Park, and D. L. Kwong, “Gate-all
–around junctionless nanowire MOSFET with improved low-frequency noise
behavior,” IEEE Electron Device Lett. vol.32, no.12, pp.1752–1754, Dec 2011.
[3.21] J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarov, and R. T. Doria, “Reduced electric field in junctionless transistors, “ Appl. Phys. Lett. vol.96, no.7, pp.073510:1–7, Feb. 2010.
[3.22] T. Park, J. Y. Kim, and J. P. Colinge, “Negative-bias-temperature-instability and hot carrier effects in nanowire junctionless p-channel multigate transistors,” Appl. Phys. Lett. vol.100, no.8, pp.083504:1–4, Feb. 2012.
[3.23] C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. Dehdashti, and J. P. Colinge, “High-Temperature Performance of Silicon Junctionless MOSFETs ,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 620–625 , Mar. 2010.
[3.24] J. P. Colinge, A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, and P. Razavi, “Junctionless Nanowire Transistor (JNT): Properties and design guidelines,” Solid State Electron., vol.65–66, no. 5, pp. 33-37, Nov.-Dec. 2011.
[3.25] C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett. vol.94, pp.053511:1–3, Mar. 2009.
[3.26] Y. C. Cheng, Y. C. Wu, H. B. Chen, M. H Han, N. H Lu, J. J. Su, and C. Y Chang, “High voltage characteristics of JL FET poly-Silicon thin film transistors,” Appl. Phys. Lett. vol.103, pp.123510:1–3, Sept. 2013.
[3.27] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. R. Orabi, and K. Kuhn, “Comparison of Junctionless and Conventional Trigate Transistors With Lg Down to 26 nm,” IEEE Electron Device Lett. vol.32, no. 9, pp. 1170–172, Sept. 2011.
[3.28] R. T. Doria, M. A. Pavanello, R. D. Trevisoli, M. de Souza, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, and J.P. Colinge, “Junctionless multiple-gate transistors for analog applications,” IEEE Trans. Electron Devices, vol.58, no. 8, pp.2511–2519, Aug.2011.
[3.29] C. T. Tso, H.R. Chen, Y.H. Fa, “Methods of forming semiconductor structures and systems for forming semiconductor structures”, Patent N0.:US 7,589,005 B2, Sep. 2009.
[3.30] G. S. Hwang and K. P. Giapis, “On the origin of the notching effect during etching in uniform high density plasmas,” J. Vac. Sci. Technol. B, vol. 15, pp. 70–87, Jan./Feb. 1997.
[3.31] M. D. Jacunski, M. S. Shur, A. A. Owusu, T. Ytterdal, M. Hack, and B. Inıguez. “A short channel DC SPICE model for polysilicon thin-film transistors including temperature effects”, IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1146–1158, Jun. 1999.
[3.32] S. D. Brotherton, “Polycrystalline silicon thin film I transistors”, Semicond. Sci. Technol. Vol. 10, pp. 721–738, Feb. 1995.
[3.33] D. Jiménez, B. Iñíguez, J. Suñé, L. F. Marsal, J. Pallarès, J. Roig, and D. Flores, “Continuous Analytic I–V Model for Surrounding-Gate MOSFETs, IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004
T. Y. Liu, S. C. Lo, and J. T. Sheu, “ Gate-All-Around Single-Crystal-Like Poly-Si Nanowire TFTs With a Steep-Subthreshold Slope,” IEEE Electron Device Lett. vol.34, no.4, pp.523–525, Apr. 2013.
[4.2] J. T. Sheu, P. C. Huang, T. S. Sheu, C. C. Chen, and L. A. Chen, “Characteristics of Gate-All-Around Twin Poly-Si Nanowire Thin-Film Transistors,” IEEE Electron Device Lett., vol.30, no.2, pp.139–141, Feb. 2009.
[4.3] J. T. Park and J. P. Colinge, “Multiple-Gate SOI MOSFETs: Device Design Guidelines,” IEEE Trans. Electron Devices, vol.49, pp. 2222–2229 Dec. 2002.
[4.4] J. Y. Song, W. Y. Choi, J. H. Park, J. S. Lee, and B. G. Park, “Design Optimization of Gate-All-Around (GAA) MOSFETs” IEEE Trans. on Nanotechnology ,vol.5, no. 3, pp.186–191, May 2006.
[4.5] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong,” High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices”, IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–387, Jun.2006.
[4.6] H. H. Hsu, T. W. Liu, L. Chan, C. D. Lin, T. Y. Huang, and H. C. Lin, “Fabrication and Characterization of Multiple-Gated Poly-Si Nanowire Thin-Film Transistors and Impacts of Multiple-Gate Structures on Device Fluctuations,“ IEEE Trans. Electron Device, vol. 55, no. 11, pp. 3063–3069, Nov.2008.
[4.7] H. C. Lin, W. C. Chen, C. D. Lin, and T. Y. Huang, “Performance Enhancement in Double-Gated Poly-Si Nanowire Transistors With Reduced Nanowire Channel Thickness,” IEEE Electron Device Lett. vol. 30, no. 6, pp.644–646, Jun, 2009.
[4.8] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Sub-50 nm P-Channel FinFET,” IEEE Trans. Electron Device, vol. 48, no. 5, pp. 880–886, May 2001.
[4.9] N. Lindert, L. Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J. Bokor, and C. Hu, “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Electron Device Lett. vol. 22, no. 10, pp. 487–489,.
[4.10] M. Im, J. W. Han, H. Lee, L. E. Yu, S. Kim, C. H. Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J. S. Oh, Y. C. Park, H. M. Lee, and Y. K. Choi, “Multiple-Gate CMOS Thin-Film Transistor With Polysilicon Nanowire,” IEEE Electron Device Lett. vol. 29, no.1, pp.102–105, Jan. 2008.
[4.11] T. Skotnicki, G. Merckel, and T. Pedron, “The Voltage-Doping Transformation: A New Approach to the Modeling of MOSFET Short-Channel Effects,” IEEE Electron Device Lett. vol. 9, no.3, pp.109–112, Mar. 1988.
[4.12] Y. Taur, “CMOS design near the limit of scaling,” IBM J. Res. Dev., vol. 46, no. 2/3 pp.213–222, Mar./May 2002
[4.13] V. Subramanian, “Multiple Gate Field-Effect Transistors for Future CMOS Technologies” IETE Technical Review, vol. 27, no.6, pp. 446–456, Nov.-Dec. 2010.
[4.14] M. Masahara, Y. Liu, S. Hosokawa, T. Matsukawa, K. Ishii, H. Tanoue, K. Sakamoto, T. Sekigawa, H. Yamauchi, S. Kanemaru, and E. Suzuki, “Ultrathin Channel Vertical DG MOSFET Fabricated by Using Ion-Bombardment-Retarded Etching,” IEEE Trans. Electron Devices, vol. 51, pp. 2078–2085, Dec. 2004.
[4.15] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. S. Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. IEEE vol. 85, no.4, pp.486–504, Apr. 1997.
[4.16] C. Hu, “Future CMOS Scaling and Reliability,” Proc. IEEE vol. 81, no.4, pp.682–689, May 1993.
[4.17] P. Vittorio, S. Corrado, F. Guglielmo, and M. Luigi, “Two-dimensional delineation of ultrashallow junctions obtained by ion implantation and excimer laser annealing.” Appl. Phys. Lett. vol.77, no. 4, p.552–554, Jul. 2000.
[4.18] J. P. Colinge, C. W. Lee, and A. Afzalian, “Nanowire transistors without junctions,” Nat. Nanotechnol. vol.5, pp.225–229, Feb.2010.
[4.19] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate Transistors,” Solid-State Electron. vol.54, no. 2, pp.97–103, Feb. 2010.
[4.20] Singh, N. Singh, S. Member, J. Miao, W. T. Park, and D. L. Kwong, “Gate-all -around junctionless nanowire MOSFET with improved low-frequency noise behavior,” IEEE Electron Device Lett. vol.32, no.12, pp.1752–1754, Dec. 2011.
[4.21] C. P. Lin, Y. H. Xiao, B. Y Tsui, IEEE Electron Device Lett. “High-Performance Poly-Si TFTs Fabricated by Implant-to-Silicide Technique,” IEEE Trans. Electron Device, vol.26, no.3, pp. 185–187 Mar. 2005.
[4.22] P. Y Kuo, Y, H. Lu, T. S. Chao, IEEE Trans. Electron Devices. “High-Performance GAA Sidewall-Damascened Sub-10-nm In Situ n+-Doped Poly-Si NWs Channels Junctionless FETs,” IEEE Trans. Electron Device, vol.61. no.11, pp. 3821–3826, Nov.2014.
[4.23] G. S. Hwang and K. P. Giapis, J. Vac. Sci. Technol. B, “On the origin of the
notching effect during etching in uniform high density plasmas,” J. Vac. Sci. Technol. B, vol. 15, pp. 70–87, Jan./Feb. 1997.
[4.24] K. Takeuchi, T. Tatsumi, and A. Furukawa, “Channel Engineering for the Reduction of Random-Dopant-Placement-Induced Threshold Voltage Fluctuation,” in IEDM Tech. Dig., vol.33. pp. 841–844, Dec.1997.
[4.25] C. J. Su, T. I. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no.4, pp.521–523, Apr.2011.
[4.26] C. I Lin, K. H Lee, H. C. Lin, and T. Y. Huang, “Fabrication of tri-gated junctionless poly-Si transistors with I-line based lithography,” Jpn.J. Appl. Phys. vol. 53, pp, 04EA01:1–4, Feb.2014.
[4.27] C. H. Chou, I. C Lee, D. C. Lei, and H. C. Cheng, “Planar junctionless poly-Si thin-film transistors with single gate and double gate,” Jpn.J. Appl. Phys. vol. 53, pp. 06JE07:1–4, Feb.2014.
[4.28] H. C. Lin, C. I Lin, and T. Y Huang, “Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel “ IEEE Electron Device Lett. vol.33, no.1, pp. 53–55. Jan.2012.
[4.29] J. Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo, and D. L. Kwong, “Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture,” IEEE Electron Device Lett. vol.30, no.3, pp. 246–249, Mar.2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔