|
[1.1] International Technology Roadmap for Semiconductors 2016: http://www.itrs.net [1.2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” Solid-State Circuits, IEEE Journal of, vol. 9, no.5, pp. 256-268, Oct. 1974, [1.3] M. Im, J. W. Han, H. Lee, L. E. Yu, S. Kim, C. H. Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J. S. Oh, Y. C. Park, H. M. Lee, and Y. K. Choi, “Multiple-gate CMOS thin-film transistor with polysilicon nanowire,” IEEE Electron Device Lett., vol. 29, no. 1, pp. 102–104, Jun. 2008. [1.4] C. M. Lee and B. Y. Tsui, “High-performance poly-Si nanowire thin film transistors using the HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 327–329, Mar. 2011. [1.5] T. C. Hsiao, and J. C. S. Woo, “Subthreshold characteristics of fully depleted submicrometer SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 42, no. 6, pp. 1120–1125, Jun. 1995. [1.6] Y. Tian, R. Huang, X. Zhang, and Y. Wang, “A novel nanoscaled device concept: quasi SOI MOSFET to eliminate the potential weaknesses of UTB SOI MOSFET”, IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 561–568, Apr. 2005. [1.7] C. H. Chou, I. C. Lee, D. C. Lei, and H. C. Cheng, “Planar junctionless poly-Si thin-film transistors with single gate and double gate,” Jpn. J. Appl. Phys., vol. 53, no. 4S, pp. 06JE07: 1–3, May 2014. [1.8] Y. K. Choi, T. J. King, and C. Hu, “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron Device Lett., vol. 23, no. 1, pp. 25–27, Jan. 2002. [1.9] C. W. Chang, C. K. Deng, H. R. Chang, C. L. Chang, and T. F. Lei,” A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowire Channels,” IEEE Electron Device Lett., vol. 28, no. 11, pp. 993–995, Nov. 2007. [1.10] Y. Li, H. M. Chou, and J. W. Lee, “Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs,” IEEE Trans. Nanotechnol., vol. 4, no. 5, pp. 510–516, Sep. 2005. [1.11] B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo, and D. L. Kwong,” Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 791-794, Jul. 2008. [1.12] H. H. Hsu, H. C. Lin, C. W. Luo, C. J. Su, and T. Y. Huang, “Impacts of multiple-gated configuration on the characteristics of poly-Si nanowire SONOS devices,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 641–649, Mar. 2011. [1.13] C. Y. Wu, T. C. Liao, M. H. Yu, S. K. Chen, C. M. Tsai, H. C. Cheng, “Field enhancement of omega-shaped-gated poly-Si TFT SONOS memory,” Microelectron. Reliab., vol. 5, no. 50, pp. 704–708, Feb. 2010. [1.14] S. M. Fluxrnan, “Design and performance of digital polysilicon Thin-Film-Transistor circuits on glass,” IEEE Proc.-Circuits Devices Syst., vol. 141, no. 1, pp. 57–59, Feb. 2010. [1.15] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. vol. 53, no.2, pp. 1193–1202, Feb. 1982. [1.16] C. M. Yang, and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett. vol. 68, no. 24, pp. 3392–3394, Jun.1996. [1.17] C. J. Su, and H. C. Lin, “High-Performance TFTs With Si Nanowire Channels Enhanced by Metal-Induced Lateral Crystallization,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 582-584, Jul. 2006. [1.18] C. L. Wang, I. C. Lee, C. Y. Wu, C. H. Chou, P. Y. Yang, Y. T. Cheng, and H. C. Cheng, “High-Performance Polycrystalline-Silicon Nanowire Thin-Film Transistors With Location-Controlled Grain Boundary via Excimer Laser Crystallization,” IEEE Electron Device Lett., vol. 33, no. 11, pp.1562–1564, Nov. 2012. [1.19] B. C. Lim, Y. J. Choi, H. J. Choi, and J. Jang, “Hydrogenated Amorphous Silicon Thin Film Transistor Fabricated on Plasma Treated Silicon Nitride,” IEEE Trans. on electron. Device, vol. 47, no. 2, pp. 367–371, Feb. 2000. [1.20] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 Plasma Passivation on N-Channel Polycrystalline Silicon Thin-Film Transistors”, IEEE Trans. on electron. Device, vol. 44, no. 1, pp. 64–68, Jan. 1997 [1.21] C. J. Su, T. I. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no.4, pp.521–523, Apr. 2011. [1.22] T. C. Liao, S. W. Tu, M. H. Yu, W. K. Lin, C. C. Liu, K. J. Chang, Y. H. Tai, and H. C. Cheng, “Novel Gate-All-Around Poly-Si TFTs With Multiple Nanowire Channels,” IEEE Electron Device Lett., vol. 29, no. 8, pp.889–891, Aug. 2008. [1.23] T. K. Kang, T. C. Liao, C. M. Lin, H. W. Liu, F. H. Wang, and H. C. Cheng, “Gate-All-Around Poly-Si TFTs With Single-Crystal-Like Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no. 9, pp.1239–1241, Sept. 2011. [1.24] T. Y. Liu, F. M. Pan, and J. T. Sheu, “Characteristics of Gate-All-Around Junctionless Polysilicon Nanowire Transistors With Twin 20-nm Gates,” IEEE J. Electr. Dev. Soc., vol. 3, no.5, pp. 405–409, Jan. 2015. [1.25] F. Patolsky and C. M. Lieber, “Nanowire Nanosensors,” Mater. Today, vol. 8, no. 4, pp.20–28 (2005). [1.26] J. Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo, and D. L. Kwong,” Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 246–249, Mar. 2009. [1.27] S. C. Chen, T. C. Chang, P.T. Liu, Y. C. Wu, P. H. Yeh, C. F. Weng, S. M. Sze, C. Y. Chang, and C. H. Lien “Nonvolatile polycrystalline silicon Thin-Film-Transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels,” Appl. Phys. Lett., vol. 90, pp. 12111:1–3, Feb 2007. [1.28] Y. H Lu, P. Y Kuo, Y. H Wu, Y. H Chen, and T . S Chao, “Novel sub-10-nm gate-all-around Si nanowire channel poly-Si TFTs with raised source/drain”, IEEE Electron Device Lett., vol. 32, no. 2, pp. 173–175, Feb. 2011. [1.29] H. C. Lin, H. H. Hsu, C. J. Su, and T. Y. Huang, “A novel multiple-gate polycrystalline silicon nanowire transistor featuring an inverse-T gate,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 718–720, Jul. 2008. [1.30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp.1289–1292, Aug. 2001. [1.31] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory,” IEEE Electron Device Lett., vol. 28, no. 9, pp. 809–811, Sep. 207. [1.32] P. C. Huang, L. A. Chen, and J. T. Sheu, “Electric-Field Enhancement of a Gate-All-Around Nanowire Thin-Film Transistor Memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216–218, Mar. 2010. [1.33] M. Im, J-W Han, H. Lee, L-E Yu, S. Kim, C-H Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J Sub Oh, Yun Chang Park, H M Lee, and Y-K Choi, “Multiple-gate CMOS thin-film transistor. [1.34] C. M. Lee, and B. Y. Tsui, “A high-performance 30-nm gate-all-around poly-Si nanowire thin-film transistor with NH3 plasma treatment”, IEEE Electron Device Lett., vol. 31, no. 7, pp. 683–685, Jul. 2010. [1.35] M. Chen, H. Y. Yu, N. Singh, Y. Sun, N. S. Shen, X. Yuan, G. Q. Lo, and D. L. Kwong, “Vertical-Si-nanowire SONOS memory for ultrahigh-density application”, IEEE Electron Device Lett., vol. 30, no. 8, pp. 879–881, Aug. 2009. [1.36] J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One- Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res., vol. 32, no. 5, pp.435–445, Spet. 1999. [1.37] H. F. Yan, Y. J. Xing, b, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid- Solid Mechanism,” Chemical Physics Letters, vol. 323, pp.224–228, June (2000). [1.38] A. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, “Solid-Phase Diffusion Mechanism for GaAs Nanowire Growth,” Nat. Mater., vol. 3, pp.677–681, Sept.2004. [1.39] T. Y. Liu, S. C. Lo, and J. T. Sheu,“Gate-all-around single-crystal-like poly-Si nanowire TFTs with a steep-subthreshold slope,” IEEE Electron Device Lett., vol. 48, no. 5, pp. 523–525, Apr. 2013. [1.40] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010 [1.41] C. J. Su, T. I. Tsai, Y. L. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels,”IEEE Electron Device Lett., vol. 32, no. 4, pp. 521–523, Apr. 2011. [1.42] C. J. Su, T. I. Tsai, H. C. Lin, T.Y. Huang and T. S. Chao, “Low-temperature poly-Si nanowire junctionless devices with gate-all-around TiN/Al2O3 stack structure using an implant-free technique”, Nanoscale Research Lett, no.7, pp. 339:1–6, Jul. 2012. [1.43] H. C, Lin, C. I. Lin, and T. Y. Huang, “Characteristics of n-type junctionless poly-Si thin-film transistors with an ultrathin channel”, IEEE Electron Device Lett., vol. 33, no. 1, pp. 53–55, Jan. 2012. [1.44] S. Barraud, M. Berthomé, R. Coquand, M. Cassé, T. Ernst, M.-P. Samson, P. Perreau, K. K. Bourdelle, O. Faynot, and T. Poiroux, “Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm”, IEEE Electron Device Lett., vol. 33, no. 9, pp. 1225–1227, Sep. 2012. [1.45] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4," Thin Solid Films, vol. 486, pp. 38–41, 2005. [1.46] S. M. Sze and K. K. Ng, Physics of semiconductor devices: Wiley-interscience, 2006. pp. 564–565 [1.47] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981, p. 28–29. [1.48] C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett. vol. 94, pp.053511: 1–3, Mar. 2009. [1.49] P. Aminzadeh, M. Alavi, and D. Scharfetter, “Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias,” in VLSI Symp. Tech. Dig., 1998, pp. 178–179. [1.50] D. S. Jeon and D. E. Burk, “MOSFET inversion layer motilities—A physically based semi-empirical model for a wide temperature range,” IEEE Trans. Electron Devices, vol. 36, no. 8, pp. 1456–1463, Aug. 1989. [1.51] C. Rustagi, N. Singh, Y. F. Lim, G. Zhang, S. Wang, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “Low-Temperature Transport Characteristics and Quantum-Confinement Effects in Gate-All-Around Si-Nanowire N-MOSFET” IEEE Electron Device Lett. 28, 909 –912, Oct. 2007. [1.52] M de Souza, MA Pavanello, RD Trevisoli, RT Doria, J Colinge “Cryogenic operation of junctionless nanowire transistors,” IEEE Electron Device Lett., vol.32, no 10. pp.1322 –1324, Oct. 2011. [1.53] D. Y. Jeon, S. J. Park, M. Mouis, S. Barraud, G. T. Kim, and G. Ghibaudo, “Low-temperature electrical characterization of junctionless transistors,” Solid-State Electron., vol.80, pp.135–141, Feb. 2013. [1.54] L. Ma, W. Han, H. Wang, X. Li, and F. Yang, “Temperature dependence of electronic behaviors in n-type multiple-channel junctionless transistors,” J. Appl. Phys., vol.114, pp.124507:1–3, Sept. 2013. [1.55] X. Li, W. Han, L. Ma, H. Wang, Y. Zhang, and F. Yang, “Low-Temperature Quantum Transport Characteristics in Single n-Channel Junctionless Nanowire Transistors,” Electron Device Lett., vol. 34, no.5, pp.581–583, May. 2013. [1.56] J. T. Park, J. Y. Kim, C. W. Lee, and J. P. Colinge, “Low-temperature conductance oscillations in junctionless nanowire transistors,” J. Appl. Phys., vol.97, pp. 172101:1–12, Oct. 2010. [1.57] J. P. Colinge, W. Xiong, C. R. Cleavelin, T. Schulz, K. Schrüfer, K. Matthews, and P. Patruno, “Room-Temperature Low-Dimensional Effects in Pi-Gate SOI MOSFETs ,” IEEE Electron Device Lett., 27, pp. 775–777, Sept. 2006. [1.58] S. M. Sze, Physics of Semiconductor Devices, 2nd ed New York: Wiley-Interscience, 1981, pp 124–125. [1.59] D. Jiménez, B. Iñíguez, J. Suñé, L. F. Marsal, J. Pallarès, J. Roig, and D. Flores, “Continuous Analytic I–V Model for Surrounding-Gate MOSFETs, IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004 [1.60] B. C. Paz, F. Ávila-Herrera, A. Cerdeira, and M. A. Pavanello,” Double-gate junctionless transistor model including short-channel effects,” Semicond. Sci. Technol. Vol. 30, pp. 055011: 1–11, Mar. 2015. [1.61] J. P. Colinge, "Multiple-gate soi mosfets," Solid-State Electron., vol. 48, no. 6, pp. 897–905, Jun.2004. [1.62] B. G. Streetman and S. Banerjee, Solid state electronic devices vol. 4: Prentice Hall New Jersey, 2000. pp. 232:1–2 J. T. Sheu, P. C. Huang, T. S. Sheu, C. C. Chen, and L. A. Chen,“Characteristics of Gate-All-Around Twin Poly-Si Nanowire Thin-Film Transistors,” IEEE Electron Device Lett., vol.30, no.2, pp.139–141, Feb. 2009. [2.2] T. Y. Liu, S. C. Lo, and J. T. Sheu, “Gate-All-Around Single-Crystal-Like Poly-Si Nanowire TFTs With a Steep-Subthreshold Slope,” IEEE Electron Device Lett. vol.34, no.4, pp.523–525, Apr. 2013. [2.3] J. P. Colinge, A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, and P. Razavi, “Junctionless Nanowire Transistor (JNT): Properties and design guidelines,” Solid State Electron., vol.65-66, no. 5, pp. 33–37(5), Nov.-Dec. 2011. [2.4] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-Orabi, and K. Kuhn, “Comparison of Junctionless and Conventional Trigate Transistors With Lg Down to 26 nm,” IEEE Electron Device Lett. vol.32, no. 9, pp. 1170–1172, Sept. 2011. [2.5] J. T. Park and J. P. Colinge, “Multiple-Gate SOI MOSFETs: Device Design Guidelines,” IEEE Trans. Electron Devices, vol.49, pp. 2222–2229, Dec. 2002. [2.6] C. T. Tso, T. Y. Liu, and J. T. Sheu, Jpn. “Gate-all-around poly-Si nanowire junctionless thin-film transistors with multiple channels,” J. Appl. Phys. vol.54, pp.06FG06: 1–3, Apr. 2015 [2.7] J. P. Colinge, C. W. Lee, and A. Afzalian, “Nanowire transistors without junctions,” Nat. Nanotechnol. vol.5, pp.225–229, Feb.2010. [2.8] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate Transistors,” Solid-State Electron. vol.54, no. 2, pp.97–103, Feb. 2010. [2.9] P. Singh, N. Singh, S. Member, J. Miao, W. T. Park, and D. L. Kwong, “Gate-all –around junctionless nanowire MOSFET with improved low-frequency noise behavior,” IEEE Electron Device Lett. vol.32, no.12, pp.1752–1754, Dec. 2011. [2.10] J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarov, and R. T. Doria, “Reduced electric field in junctionless transistors, “ Appl. Phys. Lett. vol.96, no.7, pp.073510:1–7, Feb. 2010. [2.11] T. Park, J. Y. Kim, and J. P. Colinge, “Negative-bias-temperature-instability and hot carrier effects in nanowire junctionless p-channel multigate transistors,” Appl. Phys. Lett. vol.100, no.8, pp.083504: 1- 4, Feb. 2012. [2.12] C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett. vol.94, pp.053511:1–3, Mar. 2009. [2.14] Y. C. Cheng, Y. C. Wu, H. B. Chen, M. H Han, N. H Lu, J. J. Su, and C. Y Chang, “High voltage characteristics of JL FET poly-Silicon thin film transistors,” Appl. Phys. Lett. vol.103, pp.123510:1–3, Sept. 2013. [2.15] R. T. Doria, M. A. Pavanello, R. D. Trevisoli, M. de Souza, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, and J.P. Colinge, “Junctionless multiple-gate transistors for analog applications,” IEEE Trans. Electron Devices, vol.58, no. 8, pp.2511–2519, Aug.2011. [2.16] M de Souza, M. A. Pavanello, R. D. Trevisoli, R. T. Doria, J. P. Colinge “Cryogenic operation of junctionless nanowire transistors,” IEEE Electron Device Lett., vol.32, no 10. pp.1322–1324, Oct. 2011. [2.17] D. Y. Jeon, S. J. Park, M. Mouis, S. Barraud, G. T. Kim, and G. Ghibaudo, “Low-temperature electrical characterization of junctionless transistors,” Solid-State Electron., vol.80, pp.135–141, Feb. 2013. [2.18] L. Ma, W. Han, H. Wang, X. Li, and F. Yang, “Temperature dependence of electronic behaviors in n-type multiple-channel junctionless transistors,” J. Appl. Phys., vol.114, pp.124507:1–3, Sept. 2013. [2.19] X. Li, W. Han, L. Ma, H. Wang, Y. Zhang, and F. Yang, “Low-Temperature Quantum Transport Characteristics in Single n-Channel Junctionless Nanowire Transistors,” Electron Device Lett., vol. 34, no.5, pp.581–583, May 2013. [2.20] J. Y, W. Seto, "The electrical properties of polycrystalline silicon films,"J. Appl. Phys., vol. 46, no.12, pp.5247–5254, Dec.1975. [2.21] M. S Raman, T. Kifle, E. Bhattacharya, and K. N. Bhat, “Physical Model for the Resistivity and Temperature Coefficient of Resistivity in Heavily Doped Polysilicon,” IEEE Trans. Electron Devices, vol. 53, no.8, pp.1885–1892. Aug. 2008. [2.22] Y. C. Cheng, H. B. Chen, M. H. Han, N. H. Lu, J. J Su, C. S. Shao, and Y. C. Wu, “Temperature dependence of electronic behaviors in quantum dimension junctionless thin-film transistor,” Nanoscale Research Lett., vol. 9, pp.392 – 395, 2014. [2.23] C. J. Su, T. I. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no.4, pp.521–523, Apr. 2011. [2.24] T. Y. Chen, I. C. Chan, P. K. Chen, P. K. Ko, and C. Hu, “Subbreakdown Drain Leakage Current in MOSFET,”, IEEE Electron Device Lett., vol. 8, no. 12, pp.515–517, Nov. 1987. [2.25] P. A. Martin, B. G. Streetman, and K. Hess, “Electric field enhanced emission from non‐Coulombic traps in semiconductors,” J. Appl. Phys., vol. 52, no.12, pp.7409–7415, Dec. 1981. [2.26] J. H. Schön and B. Batlogg, “Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers,” J. Appl. Phys., vol.74, no.2 pp.260–262, Jan. 1999. [2.27] N. C. C. Lu, L. Gerzberg, and J. D. Meindl, “A new conduction model for polycrystalline silicon films,” IEEE Electron Device Lett., vol. EDL-2, no.4, pp.95–98, Apr. 1980. Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. S. Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. IEEE, vol.85, no.4, pp.486–504, Apr.1997. [3.2] T. Skotnicki, G. Merckel, and T. Pedron, ““The voltage–doping transformation: A new approach to the modeling of MOSFET short-channel effects,” IEEE Electron Device Lett., vol. 9, no. 3, pp. 109–112, Mar. 1988. [3.3] M. Masahara, Y. Liu, S. Hosokawa, T. Matsukawa, K. Ishii, H. Tanoue, K. Sakamoto, T. Sekigawa, H. Yamauchi, S. Kanemaru, and E. Suzuki, “Ultrathin Channel Vertical DG MOSFET Fabricated by Using Ion-Bombardment-Retarded Etching,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2078–2084, Dec. 2004. [3.4] M. Im, J. W. Han, H. Lee, L. E. Yu, S. Kim, C. H. Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J. S. Oh, Y. C. Park, H. M. Lee, and Y. K. Choi,” Multiple-Gate CMOS Thin-Film Transistor With Polysilicon Nanowire,” IEEE Electron Device Lett.,vol. 29, no. 1, pp.102–105, Jan. 2008. [3.5] V. Subramanian, “Multiple Gate Field-Effect Transistors for Future CMOS Technologies,” IETE Technical Review, vol. 27, no6. pp. 446–454, Sept. 2010. [3.6] Y. K. Choi, T. J. King, and C. Hu, “Nanoscale CMOS Spacer FinFET for the Terabit Era,” IEEE Electron Device Lett. vol. 23, no.1 pp.25–27, Jan.2002. [3.7] C. W. Chang, C. K. Deng, H. R. Chang, C. L. Chang, and T. F. Lei,” “A Simple Spacer Technique to Fabricate Poly-Si TFTs With 50-nm Nanowires Channels”, , IEEE Electron Device Lett., vol. 28, no. 11, pp. 993–995, Nov. 2007. [3.8] Y. Li, H. M. Chou, and J. W. Lee, “Investigation of Electrical Characteristics on Surrounding-Gate and Omega-Shaped-Gate Nanowire FinFETs,” IEEE Trans. Nanotechnol., vol. 4, no. 3, pp. 510–516, Sept. 2005. [3.9] T. K. Kang, T. C. Liao, C. M. Lin, H. W. Liu, F. H. Wang, and H. C. Cheng, “High-Performance Single-Crystal-Like Nanowire Poly-Si TFTs With Spacer Patterning Technique,” IEEE Electron Device Lett., vol.32, no.3 pp.330–332, Mar. 2011. [3.10] C. T. Tso, T. Y. Liu, and J. T. Sheu, “Gate-all-around poly-Si nanowire junctionless thin-film transistors with multiple channels,” Jpn. J. Appl. Phys., vol.54, no. 6S1, pp.06FG06:1–3, Apr.2015. [3.11] N. Lindert, L. Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T.-J. King, J. Bokor, and C. Hu, “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Electron Device Lett., vol.22, no.10 pp. 487–489, Oct. 2001. [3.12] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–386, May. 2006. [3.13] H. H. Hsu, T. W. Liu, L. Chan, C. D. Lin, T. Y. Huang, and H. C. Lin, “Fabrication and Characterization of Multiple-Gated Poly-Si Nanowire Thin-Film Transistors and Impacts of Multiple-Gate Structures on Device Fluctuations,” IEEE Trans.Electron Devices, vol.55, no. 11 pp. 3063–3069, 2008. [3.14] H. C. Lin, W. C. Chen, C. D. Lin, and T. Y. Huang, “Performance Enhancement in Double-Gated Poly-Si Nanowire Transistors With Reduced Nanowire Channel Thickness,” IEEE Electron Device Lett., vol.30, no.6 pp. 644–646, Jun. 2009. [3.15] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu,” Sub 50-nm FinFET: PMOS,” IEDM Tech. Dig. pp. 67–70, Jun.1999. [3.16] C. M. Lee, and B. Y. Tsui, “A High-Performance 30-nm Gate-All-Around Poly-Si Nanowire Thin-Film Transistor With NH3 Plasma Treatment,” IEEE Electron Device Lett. vol.31, no.7, pp.683–685, Jul. 2010. [3.17] P. Vittorio, S. Corrado, F. Guglielmo, and M. Luigi, “Two-dimensional delineation of ultrashallow junctions obtained by ion implantation and excimer laser annealing,” Appl. Phys. Lett. vol.77, no. 4, pp.552–554, Jul. 2000. [3.18] J. P. Colinge, C. W. Lee, and A. Afzalian, “Nanowire transistors without junctions,” Nat. Nanotechnol. vol.5, pp.225–229, Feb.2010. [3.19] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate Transistors,” Solid-State Electron. vol.54, no. 2, pp.97–103, Feb. 2010. [3.20] P. Singh, N. Singh, S. Member, J. Miao, W. T. Park, and D. L. Kwong, “Gate-all –around junctionless nanowire MOSFET with improved low-frequency noise behavior,” IEEE Electron Device Lett. vol.32, no.12, pp.1752–1754, Dec 2011. [3.21] J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarov, and R. T. Doria, “Reduced electric field in junctionless transistors, “ Appl. Phys. Lett. vol.96, no.7, pp.073510:1–7, Feb. 2010. [3.22] T. Park, J. Y. Kim, and J. P. Colinge, “Negative-bias-temperature-instability and hot carrier effects in nanowire junctionless p-channel multigate transistors,” Appl. Phys. Lett. vol.100, no.8, pp.083504:1–4, Feb. 2012. [3.23] C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. Dehdashti, and J. P. Colinge, “High-Temperature Performance of Silicon Junctionless MOSFETs ,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 620–625 , Mar. 2010. [3.24] J. P. Colinge, A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. D. Akhavan, and P. Razavi, “Junctionless Nanowire Transistor (JNT): Properties and design guidelines,” Solid State Electron., vol.65–66, no. 5, pp. 33-37, Nov.-Dec. 2011. [3.25] C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett. vol.94, pp.053511:1–3, Mar. 2009. [3.26] Y. C. Cheng, Y. C. Wu, H. B. Chen, M. H Han, N. H Lu, J. J. Su, and C. Y Chang, “High voltage characteristics of JL FET poly-Silicon thin film transistors,” Appl. Phys. Lett. vol.103, pp.123510:1–3, Sept. 2013. [3.27] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. R. Orabi, and K. Kuhn, “Comparison of Junctionless and Conventional Trigate Transistors With Lg Down to 26 nm,” IEEE Electron Device Lett. vol.32, no. 9, pp. 1170–172, Sept. 2011. [3.28] R. T. Doria, M. A. Pavanello, R. D. Trevisoli, M. de Souza, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, and J.P. Colinge, “Junctionless multiple-gate transistors for analog applications,” IEEE Trans. Electron Devices, vol.58, no. 8, pp.2511–2519, Aug.2011. [3.29] C. T. Tso, H.R. Chen, Y.H. Fa, “Methods of forming semiconductor structures and systems for forming semiconductor structures”, Patent N0.:US 7,589,005 B2, Sep. 2009. [3.30] G. S. Hwang and K. P. Giapis, “On the origin of the notching effect during etching in uniform high density plasmas,” J. Vac. Sci. Technol. B, vol. 15, pp. 70–87, Jan./Feb. 1997. [3.31] M. D. Jacunski, M. S. Shur, A. A. Owusu, T. Ytterdal, M. Hack, and B. Inıguez. “A short channel DC SPICE model for polysilicon thin-film transistors including temperature effects”, IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1146–1158, Jun. 1999. [3.32] S. D. Brotherton, “Polycrystalline silicon thin film I transistors”, Semicond. Sci. Technol. Vol. 10, pp. 721–738, Feb. 1995. [3.33] D. Jiménez, B. Iñíguez, J. Suñé, L. F. Marsal, J. Pallarès, J. Roig, and D. Flores, “Continuous Analytic I–V Model for Surrounding-Gate MOSFETs, IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004 T. Y. Liu, S. C. Lo, and J. T. Sheu, “ Gate-All-Around Single-Crystal-Like Poly-Si Nanowire TFTs With a Steep-Subthreshold Slope,” IEEE Electron Device Lett. vol.34, no.4, pp.523–525, Apr. 2013. [4.2] J. T. Sheu, P. C. Huang, T. S. Sheu, C. C. Chen, and L. A. Chen, “Characteristics of Gate-All-Around Twin Poly-Si Nanowire Thin-Film Transistors,” IEEE Electron Device Lett., vol.30, no.2, pp.139–141, Feb. 2009. [4.3] J. T. Park and J. P. Colinge, “Multiple-Gate SOI MOSFETs: Device Design Guidelines,” IEEE Trans. Electron Devices, vol.49, pp. 2222–2229 Dec. 2002. [4.4] J. Y. Song, W. Y. Choi, J. H. Park, J. S. Lee, and B. G. Park, “Design Optimization of Gate-All-Around (GAA) MOSFETs” IEEE Trans. on Nanotechnology ,vol.5, no. 3, pp.186–191, May 2006. [4.5] N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong,” High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices”, IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–387, Jun.2006. [4.6] H. H. Hsu, T. W. Liu, L. Chan, C. D. Lin, T. Y. Huang, and H. C. Lin, “Fabrication and Characterization of Multiple-Gated Poly-Si Nanowire Thin-Film Transistors and Impacts of Multiple-Gate Structures on Device Fluctuations,“ IEEE Trans. Electron Device, vol. 55, no. 11, pp. 3063–3069, Nov.2008. [4.7] H. C. Lin, W. C. Chen, C. D. Lin, and T. Y. Huang, “Performance Enhancement in Double-Gated Poly-Si Nanowire Transistors With Reduced Nanowire Channel Thickness,” IEEE Electron Device Lett. vol. 30, no. 6, pp.644–646, Jun, 2009. [4.8] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Sub-50 nm P-Channel FinFET,” IEEE Trans. Electron Device, vol. 48, no. 5, pp. 880–886, May 2001. [4.9] N. Lindert, L. Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J. Bokor, and C. Hu, “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Electron Device Lett. vol. 22, no. 10, pp. 487–489,. [4.10] M. Im, J. W. Han, H. Lee, L. E. Yu, S. Kim, C. H. Kim, S. C. Jeon, K. H. Kim, G. S. Lee, J. S. Oh, Y. C. Park, H. M. Lee, and Y. K. Choi, “Multiple-Gate CMOS Thin-Film Transistor With Polysilicon Nanowire,” IEEE Electron Device Lett. vol. 29, no.1, pp.102–105, Jan. 2008. [4.11] T. Skotnicki, G. Merckel, and T. Pedron, “The Voltage-Doping Transformation: A New Approach to the Modeling of MOSFET Short-Channel Effects,” IEEE Electron Device Lett. vol. 9, no.3, pp.109–112, Mar. 1988. [4.12] Y. Taur, “CMOS design near the limit of scaling,” IBM J. Res. Dev., vol. 46, no. 2/3 pp.213–222, Mar./May 2002 [4.13] V. Subramanian, “Multiple Gate Field-Effect Transistors for Future CMOS Technologies” IETE Technical Review, vol. 27, no.6, pp. 446–456, Nov.-Dec. 2010. [4.14] M. Masahara, Y. Liu, S. Hosokawa, T. Matsukawa, K. Ishii, H. Tanoue, K. Sakamoto, T. Sekigawa, H. Yamauchi, S. Kanemaru, and E. Suzuki, “Ultrathin Channel Vertical DG MOSFET Fabricated by Using Ion-Bombardment-Retarded Etching,” IEEE Trans. Electron Devices, vol. 51, pp. 2078–2085, Dec. 2004. [4.15] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. S. Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. IEEE vol. 85, no.4, pp.486–504, Apr. 1997. [4.16] C. Hu, “Future CMOS Scaling and Reliability,” Proc. IEEE vol. 81, no.4, pp.682–689, May 1993. [4.17] P. Vittorio, S. Corrado, F. Guglielmo, and M. Luigi, “Two-dimensional delineation of ultrashallow junctions obtained by ion implantation and excimer laser annealing.” Appl. Phys. Lett. vol.77, no. 4, p.552–554, Jul. 2000. [4.18] J. P. Colinge, C. W. Lee, and A. Afzalian, “Nanowire transistors without junctions,” Nat. Nanotechnol. vol.5, pp.225–229, Feb.2010. [4.19] C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Performance estimation of junctionless multigate Transistors,” Solid-State Electron. vol.54, no. 2, pp.97–103, Feb. 2010. [4.20] Singh, N. Singh, S. Member, J. Miao, W. T. Park, and D. L. Kwong, “Gate-all -around junctionless nanowire MOSFET with improved low-frequency noise behavior,” IEEE Electron Device Lett. vol.32, no.12, pp.1752–1754, Dec. 2011. [4.21] C. P. Lin, Y. H. Xiao, B. Y Tsui, IEEE Electron Device Lett. “High-Performance Poly-Si TFTs Fabricated by Implant-to-Silicide Technique,” IEEE Trans. Electron Device, vol.26, no.3, pp. 185–187 Mar. 2005. [4.22] P. Y Kuo, Y, H. Lu, T. S. Chao, IEEE Trans. Electron Devices. “High-Performance GAA Sidewall-Damascened Sub-10-nm In Situ n+-Doped Poly-Si NWs Channels Junctionless FETs,” IEEE Trans. Electron Device, vol.61. no.11, pp. 3821–3826, Nov.2014. [4.23] G. S. Hwang and K. P. Giapis, J. Vac. Sci. Technol. B, “On the origin of the notching effect during etching in uniform high density plasmas,” J. Vac. Sci. Technol. B, vol. 15, pp. 70–87, Jan./Feb. 1997. [4.24] K. Takeuchi, T. Tatsumi, and A. Furukawa, “Channel Engineering for the Reduction of Random-Dopant-Placement-Induced Threshold Voltage Fluctuation,” in IEDM Tech. Dig., vol.33. pp. 841–844, Dec.1997. [4.25] C. J. Su, T. I. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., vol. 32, no.4, pp.521–523, Apr.2011. [4.26] C. I Lin, K. H Lee, H. C. Lin, and T. Y. Huang, “Fabrication of tri-gated junctionless poly-Si transistors with I-line based lithography,” Jpn.J. Appl. Phys. vol. 53, pp, 04EA01:1–4, Feb.2014. [4.27] C. H. Chou, I. C Lee, D. C. Lei, and H. C. Cheng, “Planar junctionless poly-Si thin-film transistors with single gate and double gate,” Jpn.J. Appl. Phys. vol. 53, pp. 06JE07:1–4, Feb.2014. [4.28] H. C. Lin, C. I Lin, and T. Y Huang, “Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel “ IEEE Electron Device Lett. vol.33, no.1, pp. 53–55. Jan.2012. [4.29] J. Fu, Y. Jiang, N. Singh, C. X. Zhu, G. Q. Lo, and D. L. Kwong, “Polycrystalline Si Nanowire SONOS Nonvolatile Memory Cell Fabricated on a Gate-All-Around (GAA) Channel Architecture,” IEEE Electron Device Lett. vol.30, no.3, pp. 246–249, Mar.2009.
|