(3.239.192.241) 您好!臺灣時間:2021/03/02 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張祐瑜
研究生(外文):Chang, Yu-Yu
論文名稱:雙性矽氧烷-幾丁聚醣奈米顆粒於聚甲基丙烯酸羥乙酯複合水膠用於青光眼藥物釋放治療之研究
論文名稱(外文):Amphiphilic Siloxane-chitosan nanoparticle loaded polyHEMA-Based Composite Hydrogels with Release of Latanoprost for Anti-glaucoma Treatment
指導教授:劉典謨劉典謨引用關係
指導教授(外文):Liu, Dean-Mo
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:水膠雙性幾丁聚醣青光眼拉坦前列素奈米材料
外文關鍵詞:HydrogelAmphiphilic chitosanGlaucomaLatanoprostNanomaterials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract III
致謝 V
Contents VI
Table Captions IX
Figure Captions X
Chapter1 Introduction 1
Chapter 2 Literature review 4
2-1 Glaucoma 4
2-1-1 Latanoprost for glaucoma treatment 6
2-2 Introduction of modified chitosan 8
2-3 Enzymatic degradation 10
2-4 Hydrogel 11
2-4-1 Soft contact lens 13
2-5 Drug delivery systems of contact lens 14
Chapter 3 Experiment Section 17
3-1 Materials and reagent 17
3-2 Apparatus 19
3-3 Fabrication of nanoparticle loaded hydrogel 20
3-3-1 Enzymatic degradation of CHC nanoparticle 20
3-3-2 Synthesis of CHC-PDMS nanoparticle 20
3-3-3 Fabrication of Lys-CHC-PDMS nanoparticle loaded hydrogel 21
3-4 Fabrication of drug-carrying hydrogel 22
3-4-1 Fabrication of drug-carrying CHC-PDMS nanoparticle loaded hydrogel 23
3-5 Characterization of the amphiphilic molecules and hydrogel 23
3-5-1 1H- Nuclear Magnetic Resonance(NMR) 23
3-5-2 Fourier Transform Infrared Spectroscopy (FT-IR) 24
3-5-3 Morphology (Scanning Electron Microscopy) 24
3-5-4 Dynamic Light Scattering (DLS) 25
3-5-5 Swelling Test 25
3-5-6 Water Retention Test 26
3-5-7 Transmittance Measurement 26
3-6 Biomedical properties of CHC-PDMS nanoparticle loaded hydrogel 27
3-6-1 Cell Culture 27
3-6-2 In vitro cytotoxicity 27
3-6-3 Animal experiment 28
3-7 Drug release test 31
3-7-1 High Performance Liquid Chromatography (HPLC) Analysis 31
3-7-2 Drug Release Behavior 32
Chapter 4 Characterization Analysis and Discussion 33
4-1 Characterization of Lys-CHC-PDMS nanoparticles 33
4-1-1 Fourier Transform Infrared Spectroscopy (FT-IR) 33
4-1-2 1H-Nuclear Magnetic Resonance 35
4-2 Morphological Structure of CHC nanoparticles 38
4-2-1 Scanning Electron Microscopy (SEM) 38
4-2-2 Dynamic Light Scattering (DLS) 41
4-3 Swelling and water retention behavior of CHC-PDMS Nanoparticles hydrogels 42
4-3-1 Swelling test under various Lys-CHC-PDMS amount 42
4-3-2 Water retention test under various Lys-CHC-PDMS concentrations 44
4-4 Transmittance test 47
Chapter 5 Drug Release Behavior and Biomedical properties of CHC-PDMS nanoparticle loaded hydrogels 50
5-1 Latanoprost elution from Lys-CHC-PDMS nanoparticle loaded hydrogels 50
5-2 Cytotoxicity of hydrogels 54
5-3 In vivo study 55
5-3-1 Eye irritation evaluation 55
5-3-2 Induced Glaucoma 57
5-3-3 Intraocular pressures (IOP) measurement 58
5-4 Latanoprost of Lys-CHC-PDMS nanoparticle loaded hydrogels in vivo release 59
Chapter 6 Conclusions 61
Reference 63
[1].Loewen, Nils A., and Angelo P. Tanna. "Glaucoma risk factors: intraocular pressure." Clinical Glaucoma Care. Springer New York, 2014. 1-22.
167-171.
[2.] Tajik, Hossein, et al. "Preparation of chitosan from brine shrimp (Artemia urmiana) cyst shells and effects of different chemical processing sequences on the physicochemical and functional properties of the product." Molecules 13.6 (2008): 1263-1274.
[3]Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–851.
[4] Lehigh Valley Center For Sight. https://www.lvcenter4sight.com/
[5] Kocabora, M. Selim, et al. "Development of ocular hypertension and persistent glaucoma after intravitreal injection of triamcinolone." Clin Ophthalmol 2.1 (2008):
[6] Lichter, Paul R., et al. "Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery." Ophthalmology 108.11 (2001): 1943-1953.
[7.] Basu, S., et al. "Corneal permeability to and ocular metabolism of phenyl substituted prostaglandin esters in vitro." Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA) 50.4 (1994): 161-168.
[8.] Sjöquist, Birgitta, Saeid Tajallaei, and Johan Stjernschantz. "Pharmacokinetics of latanoprost in the cynomolgus monkey." Arzneimittelforschung 49.03 (1999): 225-233.
[9] Sjöquist, B., et al. "The pharmacokinetics of a new antiglaucoma drug, latanoprost, in the rabbit." Drug metabolism and disposition 26.8 (1998): 745-754.
[10] Berenson KL, Kymes SK, Hollander DA, Fiscella R, Burk C, Patel V. Cost-offset analysis: bimatoprost versus other prostaglandin analogues in open-angle glaucoma. Am J Manag Care. 2011;17(9):e365–e374.
[11] Stjernschantz J. From PGF(2alpha)-isopropyl ester to latanoprost: a review of the development of xalatan: the Proctor lecture. Invest Ophthalmol Vis Sci. 2001;42(6):1134.
[12] Nishikawa H, Ueno A, Nishikawa S, et al.Sulfated glycosaminoglycan synthesis and its regulation by transforming growth factor-beta in rat clonal dental pulp cells. J Endod 2000;26: 169–171.
[13] Costa-Pinto, Ana R., et al. "In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds." Journal of Bioactive and Compatible Polymers 29.2 (2014): 137-151.ophthalmology & visual science 42.6 (2001): 1134-1145.
[14] Wang, J.J., et al., Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine, 2011. 6: p. 765-774.
[15] Dash, M., et al., Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 2011. 36(8): p. 981-1014.
[16] Liu, K.-H., et al., Self-assembled hollow nanocapsule from amphiphatic carboxymethylhexanoyl chitosan as drug carrier. Macromolecules, 2008. 41(17): p. 6511-6516.
[17] De Salamanca, A.E., et al., Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Investigative ophthalmology & visual science, 2006. 47(4): p. 1416-1425.
[18] de la Fuente, M., B. Seijo, and M.J. Alonso, Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Investigative Ophthalmology and Visual Science, 2008. 49(5): p. 2016.
[19] Nóbrega, Andréa Martins da, et al. "Determination of eye irritation potential of low-irritant products: comparison of in vitro results with the in vivo draize rabbit test." Brazilian Archives of Biology and Technology 55.3 (2012): 381-388.
[20] Croisier, Florence, and Christine Jérôme. "Chitosan-based biomaterials for tissue engineering." European Polymer Journal 49.4 (2013): 780-792.
[21] Hossain, M. S., and A. Iqbal. "Production and characterization of chitosan from shrimp waste." Journal of the Bangladesh Agricultural University 12.1 (2014): 153-160.
[22] Yan, Qiang, and Stephen S. Fong. "Bacterial chitinase: nature and perspectives for sustainable bioproduction." Bioresources and Bioprocessing 2.1 (2015): 31.
[23] Fleming, Alexander. "On a remarkable bacteriolytic element found in tissues and secretions." Proceedings of the Royal Society of London B: Biological Sciences 93.653 (1922): 306-317.
[24] Hankiewicz, Jan, and Ewa Swierczek. "Lysozyme in human body fluids." Clinica chimica acta 57.3 (1974): 205-209.
[25] Mine, Yoshinori, Fupeng Ma, and Sophie Lauriau. "Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme." Journal of Agricultural and Food Chemistry 52.5 (2004): 1088-1094.
[26] Vocadlo, David J., et al. "Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate." Nature 412.6849 (2001): 835-838.
[27] Guarino, Vincenzo, et al. "Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications." (2015).
[28.] Pal, K., A.K. Banthia, and D.K. Majumdar, Polymeric Hydrogels: Characterization and Biomedical Applications. Designed Monomers and Polymers, 2009. 12(3): p. 197-220.
[29.] Hamidi, M., A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1638-1649.
[30.] Gulrez, Syed KH, Saphwan Al-Assaf, and Glyn O. Phillips. "Hydrogels: methods of preparation, characterisation and applications." Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, 2011.
[31.] Ullah, Faheem, et al. "Classification, processing and application of hydrogels: A review." Materials Science and Engineering: C 57 (2015): 414-433.
[32.] Ahmed, Enas M. "Hydrogel: Preparation, characterization, and applications: A review." Journal of advanced research 6.2 (2015): 105-121.
[33.]Hoffman, Allan S. "Hydrogels for biomedical applications." Advanced drug delivery reviews 64 (2012): 18-23.
[34.] Yin, Y., Y. Yang, and H. Xu, Swelling behavior of hydrogels for colon
site drug delivery. Journal of applied polymer science, 2002. 83(13): p. 2835-2842.
[35] Wichterle, O. and D. Lim, Hydrophilic gels for biological use. 1960.
[36.] Caló, Enrica, and Vitaliy V. Khutoryanskiy. "Biomedical applications of hydrogels: A review of patents and commercial products." European Polymer Journal 65 (2015): 252-267.
[37] Jason J. Nichols, OD, MPH, PhD, FAAO “Contact Lenses 2015 Strong growth in some segments and a few surprises highlight a year of modest gains overall.” January 1, 2016
[38] Efron, Nathan, et al. "Trends in US contact lens prescribing 2002 to 2014." Optometry and Vision Science 92.7 (2015): 758-767.
[39.] Lim, Franklin, and Anthony M. Sun. "Microencapsulated islets as bioartificial endocrine pancreas." Science 210.4472 (1980): 908-910.
[40.] Yannas, I. V., et al. "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin." Proceedings of the National Academy of Sciences 86.3 (1989): 933-937.
[41.] Hubbell, Jeffrey A. "Synthetic biodegradable polymers for tissue engineering and drug delivery." Current Opinion in Solid State and Materials Science 3.3 (1998): 246-251.
[42] Jhaveri, S.J., et al., Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules, 2008. 10(1): p. 174-183.
[43] García-Millán, E., S. Koprivnik, and F.J. Otero-Espinar, Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. International journal of pharmaceutics, 2015. 487(1): p. 260-269.
[44] Belkas, J.S., et al., Long-term in vivo biomechanical properties and biocompatibility of poly (2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials, 2005. 26(14): p. 1741-1749.
[45] Silicones, S.-E., Characteristic Properties of Silicone Rubber Compounds. 2013.
[46] Yen, M.S. and P.Y. Tsai, Study on polyethylene glycol/polydimethylsiloxane mixing soft segment waterborne polyurethane from different mixing processes. Journal of applied polymer science, 2003. 90(1): p. 233-243.
[47] Vargün, E. and A. Usanmaz, Synthesis and surface properties of polydimethylsiloxane based block copolymers: poly [dimethylsiloxane block (ethyl methacrylate)] and poly [dimethylsiloxane block (hydroxyethyl methacrylate)]. Polymer International, 2010. 59(12): p. 1586-1597.
[48] Sedlavek, J., Possibilities of application of ophthalmic drugs with the aid of gel contact lens. Cesk Oftalmol, 1965. 21(1): p. 509-14.
[49] Gulsen, D. and A. Chauhan, Ophthalmic drug delivery through contact lenses. Investigative ophthalmology & visual science, 2004. 45(7): p. 2342-2347.
[50] Peng, C.-C., J. Kim, and A. Chauhan, Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials, 2010. 31(14): p. 4032-4047.
[51] Bengani LC, Hsu K-H, Gause S, Chauhan A. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv. 2013 Jul 22
[52] Jiang, J., et al., Coated microneedles for drug delivery to the eye. Investigative Ophthalmology and Visual Science, 2007. 48(9): p. 4038.
[53] Ghate D, Edelhauser H. Barriers to glaucoma drug delivery. J Glaucoma. 2008;17(2):147.
[54] Nordstrom BL, Friedman DS, Mozaffari E, Quigley HA, Walker AM. Persistence and adherence with topical glaucoma therapy. Am J Ophthalmol. 2005;140(4):598–606.
[55] Sleath B, Blalock S, Covert D, Stone JL, Skinner AC, Muir K, et al. The relationship between glaucoma medication adherence, eye drop technique, and visual field defect severity. Ophthalmology. 2011;118(12):2398–2402.
[56]Ciolino, Joseph B., et al. "In vivo performance of a drug-eluting contact lens to treat glaucoma for a month." Biomaterials 35.1 (2014): 432-439.
[57] Skuta GL, Morgan RK. Corticosteroid-induced glaucoma. In: Ritch R, Shields MB, Krupin T, editors. The Glaucomas. 2nd ed. II. St Louis: Mosby; 1996. pp. 1177–88.
[58]Stjernschantz, Johan Wilhelm. "From PGF2α-Isopropyl Ester to Latanoprost: A Review of the Development of Xalatan The Proctor Lecture." Investigative
[59] Song, Zhengyu, et al. "Glycyrrhizin could reduce ocular hypertension induced by triamcinolone acetonide in rabbits." (2011).
[60.] Bitter C, Suter K, Figueiredo V, Pruente C, Hatz K, Surber C. Preservative-free triamcinolone acetonide suspension developed for intravitreal injection. J Ocul Pharmacol Ther. 2008;24:62–9.
[61.] Liu, T.-Y., et al., Synthesis and characterization of amphiphatic carboxymethylhexanoyl chitosan hydrogel: water-retention ability and drug encapsulation. Langmuir, 2006. 22(23): p. 9740-9745
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔