跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張庭豪
研究生(外文):Chang, Ting-Hao
論文名稱:利用靜態複製法與Repeated Richardson Extrapolation 評價CEV模型下的障礙選擇權
論文名稱(外文):Pricing Barrier Options by Static Replication and Repeated Richardson Extrapolation under the CEV Model
指導教授:郭家豪郭家豪引用關係
口試委員:張龍福林瑞嘉王之彥
口試日期:2017-06-02
學位類別:碩士
校院名稱:國立交通大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:17
中文關鍵詞:障礙選擇權靜態複製法CEV模型Repeated Richardson 外插法
外文關鍵詞:barrier optionsstatic replicationRepeated Richardson ExtrapolationCEV Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製之目的為提供兼具效率與準確性的障礙選擇權評價方法,作者以Derman, Ergener, Kani (1995, DEK)發表的靜態複製法為基礎,並融合了兩種方法來評價障礙選擇權價格,希冀藉由此方法能夠迅速且有效的套用在CEV模型的架構中。本文嘗試以上限終止障礙買權(UOC)為例,透過DEK method我們可以簡單建構出投資組合來複製一個時間被均勻劃分的障礙選擇權,使其在觸及障礙時的價格歸零以達到基本複製,但為了能夠提升評價的準確性,作者額外使用了Chang, Chung, Stapleton (2007)文中使用的repeated Richardson extrapolation及Chung, Shih, Tsai (2010)所提出的theta-matching來作為改善的依據,最後也透過誤差估計的測試來鞏固模型的穩健性,並依其數值分析總結何種方法最能達到本文宗旨。
In this paper, the author attempts to modify the performance of hedging barrier options with static replication approach proposed by Derman, Ergener, and Kani(1995, DEK) and extrapolation method distributed by Chang, Chung, Stapleton (2007) under the constant elasticity of variance model of Cox and Ross (1976) in order to figure out whether the improved results show up. With the DEK method, the value of the portfolio can correspond the zero value of the barrier option at evenly cutting time points when the stock price hits the barrier, and then the author further adds the theta-matching condition in order to accurately approximate the results. Moreover, the author uses the repeated Richardson extrapolation, which allows us to discover the value of the approximation faster. Finally, by comparing these two methods, the author selects the most efficient one and test it with error estimation for the purpose of the accuracy.
中文摘要 …………………………………………………………………… i
英文摘要 …………………………………………………………………… ii
目錄 …………………………………………………………………… iii
表目錄 …………………………………………………………………… iv
一、 緒論 …………………………………………………………………… 1
二、 研究方法 …………………………………………………………………… 3
2.1 CEV model ………………………………………………………………… 3
2.2 DEK method ………………………………………………………………… 5
2.3 Repeated Richardson Extrapolation …… 6
三、 數值分析 …………………………………………………………………… 8
四、 誤差估計 …………………………………………………………………… 11
五、 結論 …………………………………………………………………… 15
參考文獻 …………………………………………………………………… 16
1. Chang, C. C., Chung, S. L., and R. C. Stapleton, 2007, “Richardson Extrapolation Techniques for the Pricing of American-Style Options,” Journal of Futures Markets, 27, 791-817.
2. Chung, S. L., P. T. Shin, and W. C. Tsai, 2010, “A Modified Static Hedging Method for Continuous Barrier Options,” Journal of Futures Markets, 30 (12), 1150-1166.
3. Chung, S. L., and P. T. Shin, 2009, “Static Hedging and Pricing American Options,” Journal of Banking & Finance, 33, 2140-2149.
4. Chung, S. L., P. T. Shin, and W. C. Tsai, 2013, “Static Hedging and Pricing American Knock-In Put Options,” Journal of Banking & Finance, 37, 191-205.
5. Cox, J. C., Ross, S. A., and Rubinstein, M. 1979, “Option Pricing: A Simplified Approach,” Journal of Financial Economics, 7, 229-263.
6. Derman, E., Ergener, D., and Kani, I. 1995, “Static Options Replication,” Journal of Derivatives, 2, 78-95.
7. Farago, I., Havasi, A., Zlatev, Z., 2010, “Efficient Implementation of Stable Richardson Extrapolation Algorithms,” Computers and Mathematics with Applications, 60, 2309-2325.
8. Fink, J., 2003, “An Examination of the Effectiveness of Static Hedging in the Presence of Stochastic Volatility,” Journal of Futures Markets, 23 (9), 859-890.
9. Guo, J. H., and Chang, L. F. 2017, “An Efficient Scheme of Static Hedging Barrier Options: Richardson Extrapolation Techniques.” WFC, Sardinia, Italy, conference paper.
10. Schmidt, J. W. 1968, “Asymptotische einschliessung bei konvergenzbeschleunigenden verfahren.” Numerical Mathematics, 11, 53-56.
11. Tsai, W. C., 2014, “Improved Method for Static Replication under the CEV Model,” Finance Research Letters, 11, 194-202.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top