|
J.Sztrik. Basic queueing theorem.[Online] http://irh.inf.unideb.hu/~jsztrik/education/16/SOR_Main_Angol.pdf
Iversen, V. B. (1997). Queueing systems with constant service time and evaluation of M/D/1, k. COST257 TD (97), 38.
Tijms, H. (2006). New and old results for the M/D/c queue. AEU-International Journal of Electronics and Communications, 60(2), 125-130.
Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach. Courier Corporation.
Begin, T., & Brandwajn, A. (2013, July). A note on the accuracy of several existing approximations for M/Ph/m queues. In Computer Software and Applications Conference Workshops (COMPSACW), 2013 IEEE 37th Annual (pp. 730-735). IEEE.
De Smit, J. H. (1983). A numerical solution for the multi-server queue with hyper-exponential service times. Operations research letters, 2(5), 217-224.
Ramaswami, V., & Lucantoni, D. M. (1985). Algorithms for the multi-server queue with phase type service. Stochastic Models, 1(3), 393-417.
Baba, Y. (1983). Algorithmic solution to the M/PH/c queue with batch arrivals. J. OPER. RES. SOC. JAPAN., 26(1), 33-50.
Shin, Y. W., & Moon, D. H. (2009). Sensitivity and approximation of M/G/c queue: numerical experiments. In Proceedings of the 8th International Symposium Operations Research and its Application (ISORA’09) (pp. 140-147).
Gupta, V., Harchol-Balter, M., Dai, J. G., & Zwart, B. (2010). On the inapproximability of M/G/K: why two moments of job size distribution are not enough. Queueing Systems, 64(1), 5-48.
Sgouropoulos, N., Yao, Q., & Yastremiz, C. (2015). Matching a distribution by matching quantiles estimation. Journal of the American Statistical Association, 110(510), 742-759.
Tijms, H. C., Van Hoorn, M. H., & Federgruen, A. (1981). Approximations for the steady-state probabilities in the M/G/c queue. Advances in Applied Probability, 13(1), 186-206.
Xu, X., Wang, W., & Xu, S. (2008, October). Performance of a queuing model with Hyper-Erlang distribution service for wireless network nodes. In Wireless Communications, Networking and Mobile Computing, 2008. WiCOM'08. 4th International Conference on (pp. 1-4). IEEE.
Cossette, H., Landriault, D., Marceau, E., & Moutanabbir, K. Moment# Based Approximation with Mixed Erlang Distributions.
Psounis, K., Molinero-Fernández, P., Prabhakar, B., & Papadopoulos, F. (2005). Systems with multiple servers under heavy-tailed workloads. Performance Evaluation, 62(1), 456-474.
Brandwajn, A., & Begin, T. (2014). Reduced complexity in M/Ph/c/N queues. Performance Evaluation, 78, 42-54.
|