跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭宇傑
研究生(外文):Cheng, Yu-Chieh
論文名稱:貝式理論應用在第二期臨床試驗結合安全性考慮下使用二階段方法和第三期臨床試驗下使用多區域臨床試驗概念之設計與評估
論文名稱(外文):Bayesian Approaches for design and evaluation of the Phase II clinical trials incorporating safety and the multiregional clinical trials
指導教授:蕭金福蕭金福引用關係
指導教授(外文):Hsiao, Chin-Fu
口試委員:溫啟仲吳裕振蕭金福陳鄰安王秀瑛
口試委員(外文):Wen,Chi-ChungWu, Yuh-JennHsiao, Chin-FuChen, Lin-AnWang, Hsiuying
口試日期:2017-6-19
學位類別:博士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:115
中文關鍵詞:二階段設計毒性貝式先驗分配多區域臨床試驗
外文關鍵詞:two-stage designtoxicityBayesianpriorMRCT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
藥物開發是一個複雜且需要鉅額費用的長時間過程。傳統上,這過程需要有三個階段:尋找最大容忍毒性的劑量,並在這劑量範圍內,測試療效的效果,並尋找是否有其他反映或者副作用。除此之外,為了世界各地患者的權益,全球化臨床試驗分別在許多不同的區域逐漸地實施。這篇論文主要探討在第二期臨床試驗上的二階段臨床試驗設計與第三期臨床試驗的全球化臨床試驗設計。
第一期臨床試驗的主要目的是尋找一個新藥或者療程的最大容忍毒性的劑量(MTD)。而第二階段則是考量在這最大容忍毒性的劑量下,對於預期病症的療效效果如何。這兩個階段分別討論毒性與效性。然而,這篇論文使用貝式兩階段方法來設計同時考量毒性與效性下,設計第二期臨床試驗
為了加速全球化藥物開發,越來越多的臨床試驗需要在世界各地進行。1998年,國際藥品法規協和會(ICH)發表了指導手冊E5討論銜接性臨床試驗,並在2006年的第11屆Q&A 文件中討論多區域臨床試驗的定義。日本厚生勞動省在2006年發表了一篇指導手冊, ‘ Basic Principles on Global Clinical Trials’,對於多區域臨床試驗中各個區域的療效,提供了兩種方法來如何決定各個區域療效的一致性。在2016年,國際藥品法規協和會發表了新的指導手冊E17,更加詳細定義與如何實施多區域臨床試驗。E17建議多區域臨床試驗不只評估整體療效效果的效益,且要分析各個區域的療效情況。
此篇論文主要討論如何利用貝式方法在設計與評估於第二期臨床試驗上兩階段設計與第三期臨床上多區域臨床試驗。第一個主題同時考量毒性與效性作為主要反應,並使用狄利克雷作為先驗分配。這個方法以毒性的大小來評估療效的安全。並提供先驗分配中毒性與效性的相關性作為參考,來設計階段上的選擇或者評估每個階段的結果。考量兩種情況下,每個階段以事後機率作為評估是否此試驗可以繼續進行或者提早終止試驗。第二個主題是在多區域的臨床試驗下,並假設整體療效效果與區域間變異數皆為隨機變數下,來設計與評估此試驗。整體效應假設有均勻分布為其先驗分配,而區域間變異數則假設有半常態與逆伽瑪分配為其先驗分配。最後以整體療效效果的後驗分配來做為評估療效的結果。最後這兩個應用皆以實際例子來做示範評估。






關鍵詞: 二階段設計;毒性;貝式;先驗分配;多區域臨床試驗
Drug development is complicated and expensive with a long life cycle. Traditionally, this process has three phases to find the maximum tolerated dose (MTD); check active efficacy response as a cure, and other response or side effects. Also, global clinical trials are conducting increasingly for benefits of patients in different regions. This thesis discusses two topics related to phase II and III trials, namely two-stage designs and multiregional clinical trial.
The goal of a phase I trial is to find the maximum tolerated dose of a proposed drug or treatment is the main goal in the phase I trial. And the phase II trial proceeds with this dose to evaluate the efficacy of the proposed drug or treatment. These two steps consider toxicity and efficacy, respectively. Therefore, this study discusses Bayesian two-stage designs with considering both efficacy and toxicity as main endpoints simultaneously.
To accelerate global drug development, clinical trials increasingly need to be conducted around the world. Therefore, in 1998, the International Conference on Harmonisation (ICH) published the ICH E5 guideline about bridge study, and the 11th questions-and-answer Q&A document for the ICH E5 in 2006 discusses the definition of a multiregional clinical trial (MRCT). The Japanese Ministry of Health, Labour, and Welfare (MHLW) published an important guideline in 2007, “Basic Principles on Global Clinical Trials”, which provided two methods for determining of the consistency of regional effects. The ICH published in 2016 a new detailed guideline ICH E17 for designing and conducting of an MRCT. ICH E17 recommends that MRCT designers should evaluate not only the overall treatment effect but also the regional treatment effect.
This study constructs and evaluates two-stage designs and MRCT for two applications using Bayesian methods. The first application uses efficacy and safety as main responses, following a Dirichlet distribution as a prior. A phase II trial traditionally only evaluates efficacy. This approach also applies toxicity as main endpoint to evaluate trial safety. The correlation between rates of efficacy and toxicity of priors is influenced by choices made previously in the design stage or evaluation. Sequentially, two scenarios are discussed to evaluate the posterior probabilities at each stage. The MRCT is then designed and evaluated, and the overall treatment effect with given the uniform distribution as prior and between-region variability with given the half-normal or inverse gamma distributions as priors are considered random variables. The posterior probability of the overall treatment effect is then calculated to evaluate efficacy of a treatment. These two applications are then analyzed using two different examples.
key word: two-stage design; toxicity; Bayesian; prior; MRCT
Abstract (in Chinese) I
Abstract (in English) II
致謝 V
Table of Contents VI
List of Tables VIII
List of Figures XII
Chapter 1 Introduction 1
1.1 Bayesian approaches in the clinical trial 1
1.2 Two-stage designs in the phase II trial 3
1.3 Preliminary of The Multiregional clinical trial 13
1.3.1 Guidelines of Multiregional Clinical Trials 13
1.3.2 Multiregional clinical trial 15
1.4 Bayesian Methods to Design and Evaluate of Two-Stage Designs and Multiregional clinical trial 27
Chapter 2 Bayesian Two-Stage Design in the Phase II Trial 29
2.1 Design of Bayesian Two stage 29
2.1.1 Distribution of Observed Patients 29
2.1.2 Prior and Posterior Probability Distribution of Each Stage 30
2.2 Two scenarios in the Bayesian Two-stage design 33
2.2.1 First Scenario: Response Rate of Both Efficacy and Safety 33
2.2.2 Second Scenario: Marginal Response Rates of Efficacy and Safety 34
2.2.3 The Process of Transformation of by 36
2.2.4 Correlation between Rates of Efficacy and Safety for a Prior 41
2.3 Sample Size Determination for These Two Scenarios 43
2.3.1 Determine Responses of Each Scenario in the Design Stage 43
2.3.2 Sample Size Determination and Algorithms Based on These Two Scenarios 44
2.4 Numerical Studies 46
2.4.1 Properties of Bayesian Two-stage Design for the First Scenario 46
2.4.2 Sample Size under Different Parameters of Prior for the First Scenario 48
2.4.3 Properties of Bayesian Two-stage Design for the Second Scenario 49
2.4.4 Sample Size under Different Parameters of Prior for the Second Scenario 51
2.4.5 Changing Posterior Probabilities Dependent on under the Second Scenario 53
2.5 Example 54
Chapter 3 Bayesian Design and Evaluation of Multiregional Clinical Trials 88
3.1 Bayesian Hierarchical Model for Multiregional Clinical Trials 88
3.1.1 Notations of Responses and Regional Effects 88
3.1.3 Derivation of the Marginal Posterior Probability Density Function of 92
3.1.4 Decision Rule of the Multiregional Clinical Trial 94
3.2 Numerical Analysis 95
3.3 Example 98
Chapter 4 Discussion and Conclusion 108
References 110
Abrams K, Sansó B. Approximate Bayesian inference for random effects meta-analysis. Statistics in Medicine 1998; 17:201–218.
Bryant J, Day R. Incorporating toxicity considerations into the design of two-stage phase. Biometrics. 1995; 51(4):1372–1383.
Brutti P, Gubbiotti S, Sambucini V. An extension of the single threshold design for monitoring efficacy and safety in phase II clinical trials. Statistics in Medicine. 2011; 30:1648–1664.
Chen CM, Chi Y. Curtailed two-stage designs with two dependent binary endpoints. Pharmaceutical Statistics 2012; 11:57–62.
Chen CM, Chi Y. Adaptive two-stage designs for comparing two binomial proportions in phase II clinical trials. Journal of the Chinese Statistical Association 2012; 50:186–198.
Chen CT, Hung HMJ, Hsiao CF. Design and evaluation of multiregional trails with heterogeneous treatment effect across regions. Journal of Biopharmaceutical Statistics 2012; 22(5):1037–1050.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7:177–188.
Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1Trial). Journal of Clinical Oncology 2003; 21:2237–2246.
Garaventa A, Luksch R, Biasotti S, Severi G, Pizzitola MR, Viscardi E, Prete A, Mastrangelo S, Podda M, Haupt R, De Bernardi B. A phase II study of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma. Cancer 2003; 98(11):2488-2494.
Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1(3);515–533.
Hartung J. An alternative method for meta-analysis. Biometrical Journal 1999; 41(8):901–916.
Higgins JPT. Exploiting information in random effects meta-analysis. Ph.D. dissertation, University of Reading 1997.
Hung HMJ, Wang SJ, O’Neill R. Consideration of regional difference in design and analysis of multi-regional trials. Pharmaceutical Statistics 2010; 9(3):173–178.
Huang YF, Chang WJ, Hsiao CF. An empirical Bayes approach to evaluation of results for a specific region in multi-regional clinical trials. Pharmaceutical Statistics 2013; 12(2):59–64.
International Conference on Harmonisation. Tripartite Guidance E5, Ethnic factors in the acceptability of foreign data. Federal Register 1998; 83:31790–31796.
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. (2006). Q&A for the ICH E5 Guideline on Ethnic Factors in the Acceptability of Foreign Data. http:// www.ich.org/LOB/media/MEDIA 1194.pdf
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Efficacy Guidance E17, General principles for planning/designing of Multi-Regional Clinical Trials. 2016;
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E17/E17_Step2.pdf.
Jeffreys H. The Theory of Probability (3rd edn), Oxford, 1961.
Kahn RS, Schulz SC, Palazov VD, Rayes EB, Brecher M, Svensson O, Anderson HM, Meulien D. Efficacy and tolerability of once-daily extended release quetiapine fumarate in acute schizophrenia: a randomized, double-blind, placebo-controlled study. Journal of Clinical Psychiatry 2007; 68:832–842.
Kass R, Wasserman L. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association 1995; 90:928-934.
Lin Y, Shih WJ. Adaptive two-stage designs for single-arm phase IIA cancer clinical trials. Biometrics 2004; 60: 482–490.
Liu JT, Tsou HH, KKG Lan, Chen CT, Lai YH, Chang WJ, Tzeng CS, Hsiao CF. Assessing the consistency of the treatment effect under the discrete random effects model in multiregional clinical trials. Statistics in Medicine 2016; 35(14): 2301–2314.
Lu Y, Chow SC, Zhang ZZ. (2010). Statistical inference for clinical trials with random shift in scale parameter of target patient population. Duke Biostatistics and Bioinformatics (B&B) Working Paper Series: Paper 11, Duke University, Durham, NC. Available at: http://biostats.bepress.com/dukebiostat/art11 (accessed August 27,2012).
Ministry of Health, Labour, and Welfare (Japan). Basic Principles on Global ClinicalTrials. MHLW:Tokyo, 2007.
Pauler DK, Wakefield JC, Kass RE. Bayes factors and approximations for variance component models. Journal of the American Statistics Association 1999; 94:1242–1253.
Lan KKG, Pinheiro J. Combined estimation of treatment effects under a discrete random effects model. Statistics in Biosciences 2012; 4:235–244.
Phatak AG, Bhatt NM. Estimation of The fraction defective in curtailed sampling Plans by Attributes. Technometrics 1967; 9:219–228
Quan H, Li M, Shih WJ, Ouyang SP, Chen J, Zhang J, Zhao PL . Empirical shrinkage estimator for consistency assessment of treatment effects in multi-regional clinical trials. Statistics in Medicine 2013; 32:1691–1706.
Simon R. Optimal two-Stage designs for phase II trials. Controlled Clinical Trials. 1989; 10:1–10.
Simon R. Bayesian design and analysis of active control clinical Trials. Biometrics 1999; 55:484–487.
Stangl DK, Berry DA. META-ANALYSIS MEDICINE AND HEALTH POLICY. 2000 Marcel Dekker.
Tan SB, Machin D. Bayesian two-stage designs for phase II clinical trials. Statistics in Medicine. 2002; 21:1991–2012.
Tsou HH, Chien TY, Liu JP, and Hsiao CF. A consistency approach to evaluation of bridging studies and multiregional trials. Statistics in Medicine 2011; 17: 2171–2186.
Tsou HH, Chow SC, Lan KKG, Liu JP, Wang M, Chern HD, Ho LT, Hsiung CA, Hsiao CF. Proposals of statistical consideration to evaluation of results for a specific region in multi-regional trials – Asian perspective. Pharmaceutical Statistics 2010; 9(3):201–206.
Whitehead A. Meta-Analysis of Controlled Clinical Trials. 2002 New York, NY: Wiley.
Wu YJ, Tan TS, Chow SC, and Hsiao CF. Sample size estimation of multiregional clinical trials with heterogeneous variability across regions. Journal of Biopharmaceutical Statistic 2014; 24: 254–271.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top