|
Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92(440), 1375-1386. Brusco, M. J., & Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66(2), 249-270. Chang, C. J., Chen, W. J., Liu, S. K., Cheng, J. J., Yang, W. C. O., Chang, H. J., ... & Hwu, H. G. (2002). Morbidity risk of psychiatric disorders among the first degree relatives of schizophrenia patients in Taiwan. Schizophrenia Bulletin, 28(3), 379. Chen, W. J., Liu, S. K., Chang, C. J., Lien, Y. J., Chang, Y. H., & Hwu, H. G. (1998). Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. American Journal of Psychiatry, 155(9), 1214-1220. Cheng, J. J., Ho, H., Chang, C. J., Lan, S. Y., & Hwu, H. G. (1996). Positive and Negative Syndrome Scale (PANSS): establishment and reliability study of a Mandarin Chinese language version. Chinese Psychiatry, 10(3), 251-258. Dayton, C. M., & Macready, G. B. (1998). Concomitant-variable latent-class models. Journal of the American Statistical Association, 83 , 173-178. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society. Series B 39, 1-38. Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American statistical association, 97(457), 77-87. Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American statistical Association, 97(458), 611-631. Friedman, J. H., & Meulman, J. J. (2004). Clustering objects on subsets of attributes. Journal of the Royal Statistical Society. Series B, 66 , 815-849. Frank, I. E. & Friendman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35, 109-148. Fraiman, R., Justel, A., & Svarc, M. (2008). Selection of variables for cluster analysis and classification rules. Journal of the American Statistical Association, 103(483), 1294-1303. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61 , 215-231. Hirose, K., Tateishi, S., & Konishi, S. (2011). Efficient algorithm to select tuning parameters in sparse regression modeling with regularization. arXiv preprint arXiv:1109.2411. Huang, G. H. (2005). Selecting the number of classes under latent class regression: a factor analytic analogue. Psychometrika, 70 , 325-345. Huang, G. H., & Bandeen-Roche, K. (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika, 69 , 5-32. Huang, G. H., Wang, S.M., & Hsu, C.C. Prediction of Underlying Latent Classes via K-means and Hierarchical Clustering Algorithms. Huang, G. H., Wang, S. M., & Hsu, C. C. (2011). Optimization-based model fitting for latent class and latent profile analyses. Psychometrika, 76(4), 584-611. Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shannon, K. W., et al. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19 , 342-347. Lange, K. (1995). A quasi-Newton acceleration of the EM algorithm. Statistica sinica, 1-18. Landwehr, J. M., Pregibon, D., & Shoemaker, C. (1984). Graphical methods for assessing logistic regression models. Journal of the American Statistical Association, 79 , 61-71. Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. New York: Houghton-Mifflin. Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88 , 365-411. Liu, S. K., Hwu, H. G., & Chen, W. J. (1997). Clinical symptom dimensions and deficits on the continuous performance test in schizophrenia. Schizophrenia Research, 25 , 211-219. McCullagh, P., & Nelder, J. A. (1989). Generalized linear models, second edition. London: Chapman and Hall. Melton, B., Liang, K. Y., & Pulver, A. E. (1994). Extended latent class approach to the study of familial/sporadic forms of a disease: its application to the study of the heterogeneity of schizophrenia. Genetic Epidemiology, 11 , 311-327. Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables. British Journal of Mathematical and Statistical Psychology, 49 , 313-334. Muthen, L. K., & Muthhen, B. O. (2007). Mplus user's guide. fifth edition. Los Angeles: Muthen & Muthen. Pan, W. & Shen, X. (2007). Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research 8, 1145-1164. Raftery, A. E., & Dean, N. (2006). Variable selection for model-based clustering. Journal of the American Statistical Association, 101(473), 168-178. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Kopenhagen: Nielsen & Lydiche. Rosvold, H. E., Mirsk, A. F., Sarason, I., Bransome Jr, D. D., & Bech, L. H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20 , 343-350. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58, 267-288. Titterington, D. M., Smith, A. F., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. New York: John Wiley & Sons. Veer, L. J. van't, Dai, H., Vijver, M. J. van de, He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature,415 , 530-536. Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), 713-726.
|