|
[1] Richard Hartley and Andrew Zisserman, “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2000. [2] N. Hautiere, R. Labayrade, M. Perrollaz, et al., “Road scene analysis by stereovision: a robust and quasi-dense approach.” in Proc IEEE Int. Conf. Control, Automation, Robotics and Vision, 2006, pp. 1-6. [3] N. Suganuma, N. Fujiwara, “An obstacle extraction method using virtual disparity image.” in Proc IEEE Int. Conf. Intelligent Vehicles Symposium, 2007, pp. 456-461. [4] D. Marr, T. Poggio, “Cooperative computation of stereo disparity.” in Science, vol.194, no.4262, pp. 283-287, Oct. 1976. [5] R. Munoz Salinas, E. Aguirre, M. Garcia Silvente, “People detection and tracking using stereo vision and color.” in Image and Vision Computing, vol.25, no.6, pp. 995-1007, June 2007. [6] D. Murray, J.J. Little, “Using real-time stereo vision for mobile robot navigation.” in Autonomous Robots, vol.8, no.2, pp. 161-171, April 2000. [7] R. Sim, J.J. Little, “Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters.” in Image and Vision Computing, vol.27, no.1-2, pp. 167-177, Jan. 2009. [8] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two -frame stereo correspondence algorithms.” in International Journal of Computer Vision, vol. 47, no.1-3, pp. 7-42, April-June 2002. [9] R. Zabih and J. Woodfill, “Non-parametric Local Transforms for Computing Visual Correspondence.” in Proceedings of third European Conference on Computer Vision, vol. 2, pp. 151–158, 1994. [10] Y . Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimization via Graph Cuts.” IEEE transactions on pattern analysis and machine intelligence, pp. 1222-1239, 2001. [11] P . Fua, “Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities.” 12th. Int. Joint Conf. on Artificial Intelligence, pp. 1292–1298, 1993. [12] M . Hariyama, H. Sasaki, and M.Kameyama, “Architecture of a stereo matching VLSI processor based on hierarchically parallel memory access.” The 2004 47th Midwest Symposium on Circuits and Systems, vol 2, pp. II245- II247, 2004. [13] P . Felzenszwalb and D. Huttenlocher. “Efficient belief propagation for early vision.” In CVPR, 2004. [14] F . Fleuret and D. Geman. “Coarse-to-fine face detection.” Inter. J. Comp. Vision, 41:85–107, 2001. [15] D. Marr and T. Poggio. “A computational theory of human stereo vision.” Proceedings of the Royal Society of London. Series B. Biological Sciences, 1979. [16] G. Van Meerbergen, M. Vergauwen, M. Pollefeys, and L. Van Gool. “A hierarchical symmetric stereo algorithm using dynamic programming.” IJCV, 2002. [17] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister. “Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling.” TPAMI, 2009. [18] W . Hu, K. Zhang, L. Sun, and S. Yang. “Comparisons reducing for local stereo matching using hierarchical structure.” In ICME, 2013. [19] M . Sizintsev. “Hierarchical stereo with thin structures and transparency.” In CCCRV, 2008. [20] Zhang, K., Fang, Y., Min, D., Sun, L., Yang, S., Yan, S., & Tian, Q. “Cross-scale cost aggregation for stereo matching.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1590-1597). 2014. [21] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond.” IEEE Conference on Computer Vision and Pattern Recognition, pp. 3017-3028, June 2011. [22] Tikhonov regularization, https://en.wikipedia.org/wiki/Tikhonov_regularization [23] Q. Yang. “A non-local cost aggregation method for stereo matching.” IEEE Conference on Computer Vision and Pattern Recognition, 2012:1402-1409. [24] J. Banks and P. Corke, “Quantitative evaluation of matching methods and validity measures for stereo vision,” The International Journal of Robotics Research, vol. 20, no. 7, pp. 512–532, 2001. [25] Sun, C., “Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques.” Int. J.Comput. Vis. 47, 2002. [26] Sun, C., Seleg, S., “Fast panoramic stereo matching using cylindrical maximum surfaces.” IEEE Trans. Syst., 2004. [27] Di Stefano, Luigi, Stefano Mattoccia. “ZNCC-based template matching using bounded partial correlation.” Pattern recognition letters 26, 2005. [28] R.C. Gonzalez, R.E. Woods, “Digital Image Processing.” Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1992. 573607. [29] K. He, J. Sun, and X. Tang, “Guided image filtering.” in ECCV, 2010. [30] W. S. Jang and Y. S. Ho, “Discontinuity Preserving Disparity Estimation with Occlusion Handling.” Journal of Visual Communication and Image Representation, vol. 25, no. 7, pp. 1595-1603, Oct. 2014. [31] Middlebury Stereo Vision Page, http://www.vision.middlebury.edu/stereo/ [32] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE Conference on Computer Vision, pp. 839-846, Jan. 1998. [33] E. Binaghi, I. Gallo, G. Marino, M. Raspanti, “Neural adaptive stereo matching.”Pattern Recognition Letters 25, 1743–1758, 2004. [34] P. Corke, Machine vision toolbox, http://petercorke.com/wordpress/toolboxes/machine-vision-toolbox [35] Xilinx, https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html [36] Tara Akhavan, Hyunjin Yoo, and Margrit Gelautz. “A framework for HDR stereo matching using multi-exposed images.” Proceedings of HDRi2013-First International Conference and SME Workshop on HDR imaging. 2013. [37] Tara Akhavan, Hannes Kaufmann. “Backward compatible HDR stereo matching: a hybrid tone-mapping-based framework.” EURASIP Journal on Image and Video Processing, Volume 36, 2015. [38] D. Scharstein and R. Szeliski. “High-accuracy stereo depth maps using structured light.”IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), volume 1, pages 195-202, 2003. [39] D. Scharstein and C. Pal. “Learning conditional random fields for stereo.” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 2007. [40] H. Hirschmüller and D. Scharstein. “Evaluation of cost functions for stereo matching.”IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 2007. [41] Hirschmuller, Heiko, and Daniel Scharstein. “Evaluation of stereo matching costs on images with radiometric differences.” IEEE transactions on pattern analysis and machine intelligence 31.9: 1582-1599, 2009. [42] Patil, S., Nadar, J. S., Gada, J., Motghare, S., & Nair, S. S. “Comparison of various stereo vision cost aggregation methods.” International Journal of Engineering and Innovative Technology, 2(8), 222-226, 2013. [43] M. Bleyer, S. Chambon. “Does Color Really Help in Dense Stereo Matching?” Talk: International Symposium 3D Data Processing, Visualization and Transmission (3DPVT), 2010. [44] Brockers, Roland. “Cooperative stereo matching with color-based adaptive local support.” Computer Analysis of Images and Patterns. Springer Berlin/Heidelberg, 2009. [45] Galar, M., Jurio, A., Lopez-Molina, C., Paternain, D., Sanz, J., & Bustince, H. “Aggregation functions to combine RGB color channels in stereo matching.” Optics express, 21(1), 1247-1257, 2013. [46] Konolige, Kurt. “Small vision systems: Hardware and implementation.” Robotics research. Springer, London, 203-212, 1998. [47] Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., & Zhang, X. “On building an accurate stereo matching system on graphics hardware.” In Computer Vision Workshops (ICCV Workshops), 2011. [48] Bae, Kyeong-ryeol, and Byungin Moon. “An accurate and cost-effective stereo matching algorithm and processor for real-time embedded multimedia systems.” Multimedia Tools and Applications, 2016.
|