|
[1] L. Alexander, S. Jiang, M. Murga, and M. C. Gonz´alez. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation research part c: emerging technologies, 58:240–250, 2015. [2] M. Dash, K. K. Koo, T. Holleczek, G.-E. Yap, S. P. Krishnaswamy, and A. Shi-Nash. From mobile phone data to transport network–gaining insight about human mobility. In Mobile Data Management (MDM), 2015 16th IEEE International Conference on, volume 1, pages 243–250. IEEE, 2015. [3] M. Handte, M. U. Iqbal, S. Wagner, W. Apolinarski, P. J. Marr´on, E. M. M. Navarro, S. Martinez, S. I. Barthelemy, and M. G. Fern´andez. Crowd density estimation for public transport vehicles. In EDBT/ICDT Workshops, pages 315–322, 2014. [4] T. Holleczek, S. Yin, Y. Jin, S. Antonatos, H. L. Goh, S. Low, A. Shi-Nash, et al. Traffic measurement and route recommendation system for mass rapid transit (mrt). In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1859–1868. ACM, 2015. [5] T. Holleczek, L. Yu, J. K. Lee, O. Senn, C. Ratti, and P. Jaillet. Detecting weak public transport connections from cellphone and public transport data. In Proceedings of the 2014 International Conference on Big Data Science and Computing, page 9. ACM, 2014. [6] S. Jiang, J. Ferreira, and M. C. Gonzales. Activity-based human mobility patterns inferred from mobile phone data: A case study of singapore. IEEE Transactions on Big Data, 2016. [7] S. Jiang, G. A. Fiore, Y. Yang, J. Ferreira Jr, E. Frazzoli, and M. C. Gonz´alez. A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In Proceedings of the 2nd ACM SIGKDD international workshop on Urban Computing, page 2. ACM, 2013. [8] L. Schauer, M. Werner, and P. Marcus. Estimating crowd densities and pedestrian flows using wi-fi and bluetooth. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 171–177. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014. [9] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith, S. Consolvo, J. Hightower, W. G. Griswold, and E. De Lara. Mobility detection using everyday gsm traces. In International Conference on Ubiquitous Computing, pages 212–224. Springer, 2006. [10] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. Transportation mode detection using mobile phones and gis information. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 54–63. ACM, 2011. [11] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory data for similarity-based analysis. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pages 833–844. ACM, 2013. [12] H. Wang, F. Calabrese, G. Di Lorenzo, and C. Ratti. Transportation mode inference from anonymized and aggregated mobile phone call detail records. In Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pages 318–323. IEEE, 2010. [13] J. Weppner and P. Lukowicz. Bluetooth based collaborative crowd density estimation with mobile phones. In Pervasive computing and communications (PerCom), 2013 IEEE international conference on, pages 193–200. IEEE, 2013. [14] W. Wu, Y. Wang, J. B. Gomes, D. T. Anh, S. Antonatos, M. Xue, P. Yang, G. E. Yap, X. Li, S. Krishnaswamy, et al. Oscillation resolution for mobile phone cellular tower data to enable mobility modelling. In Mobile Data Management (MDM), 2014 IEEE 15th International Conference on, volume 1, pages 321–328. IEEE, 2014. [15] D. Xu, G. Song, P. Gao, R. Cao, X. Nie, and K. Xie. Transportation modes identification from mobile phone data using probabilistic models. Advanced Data Mining and Applications, pages 359–371, 2011. [16] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma. Understanding mobility based on gps data. In Proceedings of the 10th international conference on Ubiquitous computing, pages 312–321. ACM, 2008. [17] Y. Zheng, L. Liu, L. Wang, and X. Xie. Learning transportation mode from raw gps data for geographic applications on the web. In Proceedings of the 17th international conference on World Wide Web, pages 247–256. ACM, 2008.
|