跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠耀
研究生(外文):Li, Guan-yao
論文名稱:基於蜂窩數據的捷運人潮預估
論文名稱(外文):Estimating Crowd Flow and Crowd Density from Cellular Data for Mass Rapid Transit
指導教授:彭文志彭文志引用關係
指導教授(外文):Peng, Wen-Chih
口試委員:莊子由曾新穆易志偉
口試委員(外文):Chuang, Tzu-YuTseng,Shin-MuYi, Chih-Wei
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:29
中文關鍵詞:蜂窩數據人潮預估捷運智慧城市城市計算
外文關鍵詞:cellular datacrowd flow estimationMRTsmart cityurban computing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
了解城市中人潮的流動與密度對於智慧城市的建設以及城市的規劃有著非常重要的作用。在許多城市,捷運在公共運輸中發揮著越來越重要的作用,因此本文將專注於捷運人潮流動以及捷運站點人潮密度的研究。預估捷運人潮流動與站點人潮密度傳統的做法是通過分析智能卡(如,悠遊卡)的資料。然而,智能卡只記錄了用戶上車與下車的時間與地點;用戶什麼時候在哪個換乘站換乘不同路線的捷運無法直接從智能卡的資料中獲知。如今,大部分人都有自己的手機,手機蜂窩數據記載了用戶手機連接的基站的信息。我們可以從手機運營商提供的用戶蜂窩數據推測用戶是否乘坐捷運,根據推測的結果預估捷運人潮。為了達到這一目的,我們綜合考慮基站的性質、空間與時間的因素提出一個高效、可拓展的方法來識別用戶搭乘捷運的旅程。基於識別的結果,我們進一步預估搭乘捷運的人潮流動以及人潮密度。我們利用台灣地區最大的手機運營商中華電信提供的用戶資料對我們的方法進行檢驗。實驗結果表明,本文所提出的方法能很好地適用于捷運旅途的識別以及捷運人潮的預估。在本文中,我們提供了一些案例分析來呈現我們方法在捷運人潮預估的應用中的實用性。
Understanding the crowd flow and crowd density is crucial for smart city and urban planning. In this paper, we focus on the study of Mass rapid transit (MRT) that is playing an increasingly important role in many cities. The traditional way to estimate the crowd density and the crowd flow is by using smart card data. However, we can only know the number of passengers entering or exiting the station from smart card data. When and where the passengers change their MRT lines still remain unknown. Nowadays, each user has his/her own mobile phones and from the cellular data of mobile phone service providers, it is possible to know the users' transportation mode and the fine-grained crowd flows. As such, given a set of cellular data, we aim to estimate the crowd flow of MRT passengers and crowd density of stations as well as routes. To achieve these goals, we firstly propose an efficient and scalable approach to detect MRT trips with a pre-defined reference system. We take the cell tower properties, spatial and temporal factors into consideration in our approach. Then based on the detection result, we estimate the crowd flow and crowd density by grouping and counting the MRT trips. Extensive experiments are conducted to evaluate the detection and estimation approaches on a real dataset from Chunghwa Telecom, which is the largest telecommunication company in Taiwan. The results confirmed that our approaches are suitable for MRT trips detection, crowd flow and crowd density estimation. Finally, we provide case studies to present some applications and demonstrate the usefulness of our approaches.
1 Introduction 1
2 Related Works 4
3 Dataset and Data Pre-process 6
4 MRT Trip Detection 8
4.1 Reference System Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.1 KNT Reference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 DCT Reference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Tower-Station Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Time Interval Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Station Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Crowd Flow and Crowd Density Estimation 14
6 Evaluation 16
6.1 Performance of the estimation approach . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Performance of the detection approach . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Efficiency and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Case Studies 22
7.1 Overview of the crowdedness . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
7.2 Crowd density of a station . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Crowd density of different lines . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.4 Crowd flow of Origin-Destination Stations . . . . . . . . . . . . . . . . . . . . 24
8 Conclusion 26
[1] L. Alexander, S. Jiang, M. Murga, and M. C. Gonz´alez. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation research part c: emerging technologies, 58:240–250, 2015.
[2] M. Dash, K. K. Koo, T. Holleczek, G.-E. Yap, S. P. Krishnaswamy, and A. Shi-Nash. From mobile phone data to transport network–gaining insight about human mobility. In Mobile Data Management (MDM), 2015 16th IEEE International Conference on, volume 1, pages 243–250. IEEE, 2015.
[3] M. Handte, M. U. Iqbal, S. Wagner, W. Apolinarski, P. J. Marr´on, E. M. M. Navarro, S. Martinez, S. I. Barthelemy, and M. G. Fern´andez. Crowd density estimation for public transport vehicles. In EDBT/ICDT Workshops, pages 315–322, 2014.
[4] T. Holleczek, S. Yin, Y. Jin, S. Antonatos, H. L. Goh, S. Low, A. Shi-Nash, et al. Traffic measurement and route recommendation system for mass rapid transit (mrt). In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1859–1868. ACM, 2015.
[5] T. Holleczek, L. Yu, J. K. Lee, O. Senn, C. Ratti, and P. Jaillet. Detecting weak public transport connections from cellphone and public transport data. In Proceedings of the 2014 International Conference on Big Data Science and Computing, page 9. ACM, 2014.
[6] S. Jiang, J. Ferreira, and M. C. Gonzales. Activity-based human mobility patterns inferred from mobile phone data: A case study of singapore. IEEE Transactions on Big Data, 2016.
[7] S. Jiang, G. A. Fiore, Y. Yang, J. Ferreira Jr, E. Frazzoli, and M. C. Gonz´alez. A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In Proceedings of the 2nd ACM SIGKDD international workshop on Urban Computing, page 2. ACM, 2013.
[8] L. Schauer, M. Werner, and P. Marcus. Estimating crowd densities and pedestrian flows using wi-fi and bluetooth. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 171–177. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014.
[9] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith, S. Consolvo, J. Hightower, W. G. Griswold, and E. De Lara. Mobility detection using everyday gsm traces. In International Conference on Ubiquitous Computing, pages 212–224. Springer, 2006.
[10] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. Transportation mode detection using mobile phones and gis information. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 54–63. ACM, 2011.
[11] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. Calibrating trajectory data for similarity-based analysis. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pages 833–844. ACM, 2013.
[12] H. Wang, F. Calabrese, G. Di Lorenzo, and C. Ratti. Transportation mode inference from anonymized and aggregated mobile phone call detail records. In Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pages 318–323. IEEE, 2010.
[13] J. Weppner and P. Lukowicz. Bluetooth based collaborative crowd density estimation with mobile phones. In Pervasive computing and communications (PerCom), 2013 IEEE international conference on, pages 193–200. IEEE, 2013.
[14] W. Wu, Y. Wang, J. B. Gomes, D. T. Anh, S. Antonatos, M. Xue, P. Yang, G. E. Yap, X. Li, S. Krishnaswamy, et al. Oscillation resolution for mobile phone cellular tower data to enable mobility modelling. In Mobile Data Management (MDM), 2014 IEEE 15th International Conference on, volume 1, pages 321–328. IEEE, 2014.
[15] D. Xu, G. Song, P. Gao, R. Cao, X. Nie, and K. Xie. Transportation modes identification from mobile phone data using probabilistic models. Advanced Data Mining and Applications, pages 359–371, 2011.
[16] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma. Understanding mobility based on gps data. In Proceedings of the 10th international conference on Ubiquitous computing, pages 312–321. ACM, 2008.
[17] Y. Zheng, L. Liu, L. Wang, and X. Xie. Learning transportation mode from raw gps data for geographic applications on the web. In Proceedings of the 17th international conference on World Wide Web, pages 247–256. ACM, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top