跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耀元
研究生(外文):Chang, Yao-Yuan
論文名稱:協同魚眼攝影機做多攝影機人物定位廣域監控系統
論文名稱(外文):Wide Area Surveillance System with Multi-camera People Localization Using Fisheye Cameras
指導教授:莊仁輝
指導教授(外文):Chuang, Jen-Hui
口試委員:顏嗣鈞王才沛雷欽隆
口試委員(外文):Yen, Hsu-ChunWang, Tsai-PeiLei, Chin-Laung
口試日期:2017-06-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:人物定位魚眼攝影機
外文關鍵詞:People LocalizationFisheye Cameras
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
多攝影機的監控系統擁有多個不同角度的視野資訊,可以在人物遮蔽的情況或者擁擠的場景中確實定位人物。然而在先前的系統中,每一個監控區域必須搭配四支傳統攝影機來架設系統,隨著監控區域的增加,需要使用的攝影機數量也會隨之成長,導致費用相當可觀。在考慮安裝攝影機的時間成本、設備成本下,本論文中提出一種方法,協同擁有廣大視野的魚眼攝影機與原系統做結合。我們首先校正魚眼攝影機的光軸垂直於地表後,接著同樣以基於消失點的線段抽樣方法,替代系統中的其中一支攝影機來完成人物定位。最後,我們分析魚眼攝影機所拍攝的影像特性,做出相對應的調整。實驗結果顯示,加入魚眼攝影機後,可以成功定位出人物,並降低多攝影機監控系統在廣域情境下的設備成本。
Multi-camera surveillance system can capture more rich visual information from different angle of views, which may locate people reliably in crowded scenes or when occlusion happens. However, a previous vanishing point-based system need to uses four cameras to monitor every area of concern. As the detection area increases, the number of such sets of cameras will raise in the same time. With the consideration of lowering the cost of equipment and setup time, we propose a novel way of using a fisheye camera in place of a traditional camera a multi-camera system. First, the fisheye camera is oriented so that its optical axis is perpendicular to the ground plane, and its principal center becomes the vanishing point of vertical lines in the scene. Then, the mapping between the image plane and ground plane, which is needed in the algorithm of people localization, is established by rectifying the radial distortion along these lines. Experiment result shows that we can indeed locate people suc-cessfully with a multi-camera system using a fisheye camera.
摘 要 i
Abstract ii
目 錄 iii
圖目錄 v
表目錄 viii
第一章 簡介 1
1.1 研究動機 1
1.2 相關研究 2
1.3系統流程與論文架構 5
第二章 加速基於消失點的線段抽樣方法 7
2.1 基於消失點的線段抽樣 7
第三章 使用大尺寸螢幕來自動校正魚眼相機 16
3.1影像中心的定位 16
3.2量測校正資料 20
3.2.1找出一條與魚眼相機的光軸互相垂直的直線 20
3.2.2記錄魚眼影像中距離影像中心的位移與入射角的關係 22
第四章 協同魚眼攝影機做多攝影機人物定位 23
4.1 場景架設 23
4.2 魚眼攝影機做前景線段取樣 26
4.3 使用魚眼攝影機的投影結果結合原多攝影機人物定位系統 29
4.4 系統攝影機的擺置方法 32
第五章 實驗結果 37
5.1 調整魚眼攝影機擺放位置的實驗結果 37
5.2 增加魚眼攝影機的前景涵蓋比率權重 39
5.3 減少傳統攝影機的實驗結果 41
5.4 人物定位的實驗結果 42
第六章 結論與未來研究 44
參考資料 45
[1] C. W. Liu, H. T. Chen, K. H. Lo, C. J. Wang, and J. H. Chuang, “Accelerating Vanishing Point-Based Line Sampling Scheme for Real-Time People Localization,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 3, Mar. 2017.
[2] R. K. Behera, P. Kharade, S. Yerva, P. Dhane, A. Jain, and K. Kutty, “Multi-camera based surveillance system,” World Congress on Information and Communication Technologies, Nov. 2012.
[3] P. Peng, Y. Tian, Y. Wang, J. Li, and T. Huang, “Robust multiple cameras pedestrian detection with multi-view Bayesian network,” Pattern Recognition, vol. 48, No. 5, pp. 1760-1772, 2015.
[4] H. Iwaki, G. Srivastava, A. Kosaka, J. Park, and A. Kak, “A novel evidence accumulation framework for robust multi-camera person detection,” Second ACM/IEEE Conference on Distributed Smart Cameras, pp. 1-10, 2008.
[5] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people tracking with a probabilistic occupancy map,” IEEE Transactions on Pattern Analysis and Machine In-telligence, vol. 30, pp. 267-282, 2008.
[6] T. Bagautdinov, F. Fleuret, and P. Fua, “Probability occupancy maps for occluded depth images,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015.
[7] C. Zeng, H. Ma, “Human detection using multi-camera and 3D scene knowledge,” 18th IEEE International Conference on Image Processing, 2011.
[8] M. O. Muhammad, S. Ambellouis, and C. Achard, “Analysis of multi-planar probability maps for people localization in overlapping camera systems,” ACM International Conference on Distributed Smart Cameras, article 5, 2014.
[9] M. O. Mehammad, S. Ambellouis, and C. Achard, “Ghost pruning for people localization in overlapping multi camera systems,” IEEE International Conference on Computer Vision Theory and Applications, pp. 632–639, 2014.
[10] K. Qian, X. Ma, X. Dai, and C. Hu, “A multi-camera approach to tracking and localization of people with coexisting robots,” IEEE 7th World Congress on Intelligent Control and Automation, pp. 5162-5167, 2008.
[11] J. Ren, M. Xu, and J. S. Smith, ”Multi-view pedestrian detection using statistical colour matching,” IEEE International Conference on Multimedia Big Data, pp. 300–305, 2015.
[12] Y. S. Lin, K. H. Lo, H. T. Chen, and J. H. Chuang, “Vanishing point-based image transforms for enhancement of probabilistic occupancy map-based people localization,” IEEE Transaction on Image Process., vol. 23, no. 12, pp. 5586–5598, 2014.
[13] K. H. Lo and J. H. Chuang, “Vanishing point-based line sampling for real-time people localization,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 7, pp. 1209–1223, Jul. 2013.
[14] S. V. Martnez, J. F. Knebel, J. P. Thiran, “Multi-object tracking using the particle filter algorithm on the top-view plan,” 12th European Signal Processing Conference, Sept. 2004.
[15] H. Wang, D. Park, D. K. Han, H. Ko, “Top-view People Detection based on Multiple Subarea Pose Models for Smart Home System,” IEEE International Conference on Consumer Electronics (ICCE), Jan. 2016.
[16] R. Go, Y. Aoki, “Flexible Top-view Human Pose Estimation for Detection System Via CNN,” IEEE 5th Global Conference on Consumer Electronics, Oct. 2016.
[17] M. Rauter, “Reliable Human Detection and Tracking in Top-View Depth Images,” IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2013.
[18] C. Migniot, F. Ababsa, “Part-based 3D Multi-person Tracking using Depth Cue in a Top View,” International Conference on Computer Vision Theory and Applications (VISAPP), Jan. 2014.
[19] A. T. Chiang, Y. Wang, “Human detection in fish-eye images using HOG-based detectors over rotated windows,” IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Jul. 2014.
[20] M. Saito, K. Kitaguchi, G. Kimura, M. Hashimoto, “People Detection and Tracking from Fish-eye Image Based on Probabilistic Appearance Model,” SICE Annual Conference, Sept. 2011.
[21] T. E. Tseng, A. S. Liu, P. H. Hsiao, C. M. Huang, L. C. Fu, “Real-time people detection and tracking for indoor surveillance using multiple top-view depth cameras,” IEEE International Conference on Intelligent Robots and Systems, Sept. 2014.
[22] C. K. Peng, “Camera Calibration and Image Stitching of Vehicle Surrounding Monitoring System,” M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2014.
[23] Y. H. Chiu, “Using Laser Level to Calibrate a Fish-eye Camera,” M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2015.
[24] S. W. Yang, “Fisheye Camera Auto-Calibration by Using Large Monitor,” M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top