(34.201.11.222) 您好!臺灣時間:2021/02/25 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃威捷
研究生(外文):HUANG, Wei-Jie
論文名稱:利用同步輻射X光解析酞菁氧鈦(TiOPc)結構
論文名稱(外文):Synchrotron X–ray Structure–resolved Investigation of Titanium Oxide Phthalocyanine (TiOPc) & Its Matrix
指導教授:楊界雄楊界雄引用關係黃爾文
指導教授(外文):Yang, Kei-HsiungHuang, E-Wen
口試委員:許聿翔王俊傑
口試委員(外文):Hsu, Yu-HsiangWang, Chun-Chieh
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:200
中文關鍵詞:酞菁氧鈦結構分析系統同步輻射X光顯微術結構解析
外文關鍵詞:TiOPcGSASSynchrotron X–rayTransmission X-ray Microscopystructure–resolved
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
感光材料酞菁氧鈦(TiOPc)有著良好的光學吸收性、低毒性、水溶液穩定性、耐熱性和低製造成本,因此廣泛的被應用在雷射印表機中。台大應力所,李世光教授與許聿翔教授團隊已經開發出可利用浸塗法(dip coating)來控制TiOPc分散於系統中的技術。但TiOPc的分佈情形則有待了解。因此本研究利用互補的材料分析工具,以釐清材料結構、分佈與電性間的關係。其中,使用國家同步輻射研究中心的X光繞射和穿透X光顯微術,分成Å尺度和微米尺度進行結構解析。在低掠角X光繞射數據中,利用General Structure Analysis System (GSAS)擬合獲得晶格常數,在透過統計Analysis of variance (ANOVA)分析驗證透過製程和層間距平行的晶格c軸隨製程不同對阻抗有顯著的影響,經過迴歸分析證實晶格c軸和阻抗有正相關。我們另外再應用穿透X光顯微術影像,為了解分子級的層間距透過靜電交互作用儲存電能的效應,解析了TiOPc分子聚集導致阻抗值比預期的阻抗值低的關聯。最終,本研究提出利用浸塗法製程的幾種關鍵參數可以顯著影響TiOPc,晶格尺寸和分子堆疊密度,進而控制其電容值與阻抗值,浸塗法也另可藉由重量百分濃度、浸塗拉速、有機分子比例和浸塗角度,在微米尺度影響層狀結構以創造出不同的分子聚集間距,這樣跨尺度的TiOPc分佈模式同時也影響電容值與阻抗值。最後,針對浸塗法控制參數所預測的樣品厚度,本研究並進一步地利用冷凍切割與掃瞄電子顯微鏡的量測證實了理論與實測的差異。本研究進一步討論浸塗法理論厚度可能不準的出處與提出相應的修正公式。
Since Titanium oxide phthalocyanine (TiOPc), which is a photovoltaic material, has the properties of excellent light absorption, low toxicity, in aqueous solution stability, good heat resistance and low production cost, it has been widely applied on laser printers. Dr. Chih-Kung Lee and Dr. Yu-Hsiang Hsu, Institute of Applied Mechanics, National Taiwan University, Taiwan has developed a dip coating technology in an attempt to control the distribution of TiOPc within the coated film. It is the purpose of this thesis to carry out further studies to determine the distribution with better accuracy. In this thesis, we have used the complementary analyses of published papers to clarify the relationship between microstructures and conductivities for any arbitrary distribution within coated TiOPc film. Among them, we have used the X-ray diffraction and transmission X-ray microscopies in National Synchrotron Radiation Research Center, Taiwan, to resolve the microstructures of the coated TiOPc in angstrom and micrometer levels. Based on the above experimental results and additional data from the experiments of Grazing Incident X-Ray Diffraction (GIXRD), we have obtained lattice constants by using the available software of General Structure Analysis System (GSAS). We have also verified the relationship between impedance and parameter of c-axis lattice constant by using the software of Analysis of Variance (ANOVA). By applying regression analysis, we have confirmed the proportional relationship between the determined c-axis lattice parameter and the measured impedance. In addition, we have also used transmission X-ray microscopy to study TiOPc films and to understand the electrostatic power stored in between TiOPc layers down to atomic levels. The results have revealed congested TiOPc molecules between layers implying a lower impedance than expected. Also, by tuning several essential factors used in the dip-coating process that affect the lattice constant and molecular stacking density of the coated TiOPc film, we have found ways to control its capacitance and impedance. Apart from that, dip coating can also affect the capacitance and impedance of TiOPc caused by different cross-scale distribution patterns resulting from different molecular stacking density within the layer structure in micrometer level. Finally, regarding to the control of the thickness of specimens by dip coating, we suggest to utilize low-temperature-cut method and scanning electronic microscopy to find the differences between expected and experimented results. At last, we have studied the discrepancy between desired and measured thicknesses in dip-coated TiOPc films and suggested some feasible methods to reduce the discrepancy with a help of a simple formula.
一、 酞菁氧鈦Titanium oxide phthalocyanine (TiOPc)的功能與發展歷史 1
1.1 研究背景與動機 1
1.2 酞菁氧鈦Titanium oxide phthalocyanine (TiOPc) 5
1.2.1 酞菁氧鈦Titanium oxide phthalocyanine (TiOPc)介紹 5
1.2.2 Y型酞菁氧鈦Y form Titanium oxide phthalocyanine (Y-TiOPc)介紹 9
1.2.3 TiOPc光電導原理 15
1.2.4 電阻抗原理 20
1.2.5 TiOPc等效電路分析 20
二、 應用TiOPc的生產方式與工藝 25
2.1 浸塗法 25
2.1.1 浸塗法理論 25
2.1.2 浸塗法對結構的影響 28
2.1.3 酞菁氧鈦Y form Titanium oxide phthalocyanine TiOPc π-π堆疊結構影響電特性 29
2.1.4 酞菁氧鈦Y form Titanium oxide phthalocyanine TiOPc微結構影響電特性 31
2.2 TiOPc樣品製作 32
2.3 國際通用電訊號頻率 33
三、 實驗與分析 35
3.1 低掠角X光繞射 35
3.2 X光繞射實驗站 37
3.3 變異數分析Analysis of variance (ANOVA) 39
3.4 穿透X光顯微術實驗 41
3.4.1 穿透X光顯微術transmission X-ray microscopy (TXM)實驗站介紹 41
3.4.2 穿透X光顯微術(TXM)實驗流程 45
3.5 互補實驗 48
3.5.1. TiOPc廣角度散射Wide angle X-ray scattering (WAXS) 48
3.5.2. 表面輪廓測量儀測量TiOPc膜厚 49
3.5.3. TiOPc光學顯微影像 50
3.5.4. TiOPc掃瞄電子顯微影像測膜厚 53
3.5.5. 阻抗分析 59
四、 結果 60
4.1 TiOPc 低掠角X光繞射實驗與結果 60
4.1.1 PowderCell 模擬 60
4.1.2 TiOPc低掠角X光繞射 63
4.1.3 利用變異數分析Analysis of variance (ANOVA)分析TiOPc晶格常數 64
4.2 TiOPc穿透X光顯微術影像 70
五、 討論 88
5.1 量測阻抗方式 88
5.2 TiOPc厚度量測方式與剪應變效應(Shearing effect) 88
5.3 光學顯微鏡下看浸塗法製程 89
5.4 廣角度散射與低掠角X光繞射比較 90
5.5 浸塗法預測厚度修正 91
5.6 晶格與阻抗的關係 94
5.7 實驗可能的缺失 95
六、 結論 97
七、 未來展望 100
7.1 微結構影響阻抗機制 100
7.2 厚度公式可能的修正方式 100
7.3 實驗改進部分 101
7.4 ANOVA的分組方式 102
八、 參考文獻 104
九、 附錄 108
9.1 TiOPc晶格常數與電容關係 108
9.2 履歷 110
9.3 2016年同步年會海報 112
9.4 2016年材料年會海報 114
9.5 2016年中子年會海報 116
9.6 2016力學年會海報 118
9.7 2017年礦物、冶金與材料年會(TMS)摘要 120
9.8 2017年礦物、冶金與材料年會(TMS)口頭報告投影片 121
1. Wang, Zhong Lin, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010. 5(6): p. 540-552.
2. Huang, E. W., Y. H. Hsu, W. T. Chuang, W. C. Ko, C. K. Chang, C. K. Lee, W. C. Chang, T. K. Liao and H. C. Thong, Visible-Light Modulation on Lattice Dielectric Responses of a Piezo-Phototronic Soft Material. Adv Mater, 2015. 27(47): p. 7728-33.
3. Chang, Wen-Chi, Wen-Ching Ko, Jay Shieh, Chih-Ting Lin, An-Bang Wang and Chih-Kung Lee, A photo-sensitive piezoelectric composite material of poly(vinylidene fluoride-trifluoroethylene) and titanium oxide phthalocyanine. Materials Chemistry and Physics, 2015. 149-150: p. 254-260.
4. Chen, Yi-Chen, Application of opto-piezoelectric material in valveless micropump. 2014.
5. Oatley, C. W., W. C. Nixon and R. F. W. Pease, Scanning Electron Microscopy, in Advances in Electronics and Electron Physics, L. Marton, Editor. 1966, Academic Press. p. 181-247.
6. Hayt, William Hart, Engineering Electromagnetics Seventh Edition. 2006.
7. Fung, Hok-Sum, Soft X-ray and VUV beamlines. 2016.
8. 李祥高, 余銀霞 邵磊 降立川 卞曙光 陳建峰, 有機光導材料Y-TiOPc的制備及其性能表徵. 2005: p. 2.
9. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett., 1986. 49: p. 1210.
10. 胡雅琴, 李翔高, 合成酞菁氧钛影响因素的研究. 2007.
11. Li, L., Q. Tang, H. Li, X. Yang, W. Hu, Y. Song, Z. Shuai, W. Xu, Y. Liu and D. Zhu, An Ultra Closely π-Stacked Organic Semiconductor for High Performance Field-Effect Transistors. Advanced Materials, 2007. 19(18): p. 2613-2617.
12. Z. Bao, A. J. Lovinger, A. Dodabalapur, Organic field-effect transistors with high mobility based on copper. Appl. Phys. Lett., 1996. 69: p. 3066.
13. Liu, J., H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu and A. J. Heeger, High mobility emissive organic semiconductor. Nat Commun, 2015. 6: p. 10032.
14. Kock-Yee., Law, Organic Photoconductive Materials: Recent Trends and Developments. Chem. Rev., 1993. 93: p. 449-406.
15. 趙學明, 李祥高 邢凌燕 王文保, 鈦氧酞菁的合成工藝研究. 2006: p. 939.
16. 李祥高, 胡雅琴, 酞菁氧鈦的研究發展. 2010: p. 13.
17. 王世荣, 王文保 李祥高 侯薇, 酞菁氧钛的光敏性研究. 2005: p. 49-50.
18. Kozo Oka, Okimasa Okada and Katumi Nukada, Study of the Crystal Structure of Titanylphthalocyanine by Rietveld Analysis and
Intermolecular Energy Minimization Method. 1992.
19. Sasaki, Shoichi Yamaguchi and Yutaka, Effect of Water on Primary Photocarrier-Generation Process in Y-form Titanyl Phthalocyanine J. Phys . Chem., 2000. 104(39): p. 9225.
20. Tsun-Hsu Chen, Hsin-Hu Wang, Yu-Hsiang Hsu, Chih-Kung Lee, Integrating Optopiezoelectric Actuators and a Two-mode Excited. 2015.
21. Shinjiro Suzuki, Seizo Kitagawa, Yoichi Nakamura, Material Technology for Organic Photoconductors 2011.
22. Wolfgang Hiller, Joachim Strähle, Wolfram Kobel, Michael Hanack, Polymorphie, Leitfähigkeit und Kristallstrukturen von Oxo-phthalocyaninato-titan(IV). 1982. 159: p. 173-183.
23. Chang, Te-Chieh, Acoustic Research and Control of Piezoelectric Speakers Using A Spatially Modulated TiOPc/Piezo Buzzer Actuator. 2014.
24. Ling, L., The Applications of Electric Charge Generating Material (TiOPc) and Electric Charge Transporting Material (TPD) on Organic Photo Conductor Drum. Chemistry, 2003. 21: p. 575-584.
25. K. M. Kadish, K. M. Smith, and R. Guilard, The porphyrin handbook: Elsevier. 1999.
26. Law, K.Y., Organic photoconductive materials: recent trends and developments. Chem Rev, 1993. 93: p. 449–486.
27. Hor, Z. D. Popovic and A.-m., Photoconductivity Studies of Titanyl Phthalocyanine. Molecular Crystals and Liquid Crystals, 1993. 228: p. 75-80.
28. Hong, J. Noolandi and K., Theory of photogeneration and fluorescence quenching. The Journal of Chemical Physics, 1979. 70: p. 3230-3236.
29. Huang, Shiu-Duo, Design and Construction of Deformable Mirror Using A Spatially Modulated TiOPcPiezo Actuator. 2013.
30. Geffcken W, Berger E, Verfahren zur A¨ nderung des Reflexionsvermo¨gens optischer Gla¨ser. 1939.
31. 若榮富, 材料進階實驗.
32. Brinker, C. Jeffrey, Dip Coating. 2013: p. 233-261.
33. Brinker CJ, Hurd AJ, Frye GC, Schunk PR, Ashley CS, Sol-gel thin film formation. J Ceram Soc Jpn. 99: p. 862–877.
34. Giri, G., E. Verploegen, S. C. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney and Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011. 480(7378): p. 504-8.
35. J. Cornil, D. Beljonne, J. P. Calbert, J.-L. Brédas, Adv. Mater., 2001. 13: p. 1053.
36. W.-Q. Deng, W. A. Goddard, J. Phys. Chem., 2004. 108: p. 8614.
37. M. D. Curtis, J. Cao, J. W. Kampf, J. Am. Chem. Soc., 2004. 126: p. 4318.
38. V. C. Sundar, J. Zaumseil, V. Podozorov, E. Menard, R. L. Willett, and M. E. Gershenson T. Someya, J. A. Rogers, Science, 2004. 303: p. 1644.
39. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, J. Appl. Phys., 2002. 92: p. 5259.
40. Zeis, R., T. Siegrist and Ch Kloc, Single-crystal field-effect transistors based on copper phthalocyanine. Applied Physics Letters, 2005. 86(2): p. 022103.
41. M. David Curtis, Jie Cao, and Jeff W. Kampf, Solid-State Packing of Conjugated Oligomers From π-Stacks to the Herringbone Structure. 2004.
42. Hyunsik Moon, Roswitha Zeis, Evert-Jan Borkent, Celine Besnard, Andrew J. Lovinger,Theo Siegrist, Christian Kloc and Zhenan Bao, Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives. 2004.
43. M. M. Payne, S. R. Parkin, J. E. Anthony, C.-C. Kuo, T. N. Jackson, J. Am. Chem. Soc., 2005. 127: p. 4986.
44. Lee, Eungkyu, Jieun Ko, Keon-Hee Lim, Kyongjun Kim, Si Yun Park, Jae M. Myoung and Youn Sang Kim, Gate Capacitance-Dependent Field-Effect Mobility in Solution-Processed Oxide Semiconductor Thin-Film Transistors. Advanced Functional Materials, 2014. 24(29): p. 4689-4697.
45. Huang, Cheng-Wei, Chien-Te Hsieh, Ping-Lin Kuo and Hsisheng Teng, Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. Journal of Materials Chemistry, 2012. 22(15): p. 7314.
46. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira,, R. M. Wallace A. Pirkle, K. A. Cychosz, M. Thommes, D. Su, and E. A. Stach and R. S. Ruoff, Science, 2011. 332: p. 1537-1541.
47. Smith, A. S. Sedra and K. C., Microelectronic Circuits, 7th edition. 2016.
48. Irokawa, Yoshihiro, Nobuyuki Matsuki, Masatomo Sumiya, Yoshiki Sakuma, Takashi Sekiguchi, Toyohiro Chikyo, Yasunobu Sumida and Yoshitaka Nakano, Anomalous capacitance-voltage characteristics of Pt-AlGaN/GaN Schottky diodes exposed to hydrogen. physica status solidi (c), 2010. 7(7-8): p. 1928-1930.
49. 林麗娟, X光繞射原理及其應用. 1994.
50. Robert E. Kass, Uri T. Eden, Emery N. Brown, Analysis of Variance. 2014: p. pp 361-389.
51. 李柏堅, 統計學系列課程 單因子變異數分析. 2015.
52. 宋艷芳, 奈米穿透式X光顯微術之應用.
53. 鄭信民, 林麗娟, X光繞射應用簡介 2002.
54. Wang, C. C., Y. F. Song, S. R. Song, Q. Ji, C. C. Chiang, Q. Meng, H. Li, K. Hsiao, Y. C. Lu, B. Y. Shew, T. Huang and R. R. Reisz, Evolution and Function of Dinosaur Teeth at Ultramicrostructural Level Revealed Using Synchrotron Transmission X-ray Microscopy. Sci Rep, 2015. 5: p. 15202.
55. Fang Li, Cumaraswamy Vipulanandan, Kishore K MohantH., Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. 2003. 223: p. 103-112.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔