跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高山青
研究生(外文):Gao, Shan-Qing
論文名稱:時間交錯式類比數位轉換器及其校正技術
論文名稱(外文):Time-Interleaved ADC and Calibration Techniques
指導教授:吳介琮
指導教授(外文):Wu, Jieh-Tsorng
口試委員:陳巍仁郭建男
口試委員(外文):Chen, Wei-ZenKuo, Chien-Nan
口試日期:2016-12-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:時間交錯式類比數位轉換器失配誤差校正技術類比數位轉換器建模
外文關鍵詞:Time-Interleaved ADCMismatchCalibration TechniquesADC Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當今世界正處於信息時代的高速發展階段,因此對於電子信息硬體的精度、速度等的性能指標也有了越來越高的要求。在數據轉換器方面,相較於因製程等因素而有著速度提升瓶頸的單通道類比數位轉換器,能夠隨著通道數的增加而增速的時序交錯式類比數位轉換器越來越受到歡迎。並且時序交錯式類比數位轉換器的動態功耗並不會隨著速度的提升而成倍數的增加。不過對於時序交錯式類比數位轉換器的多通道架構而言,失調失配、增益失配、帶寬失配、時序歪斜等產生的非理想效應會嚴重影響模數轉換器的性能,關於這些非理想特性的電路設計和校正技術也因此成為學術界和產業界的研究熱點。
本文從時序交錯式類比數位轉換器的取樣模式和級間失配等方面入手,詳細分析時序交錯式類比數位轉換器系統的相關特性並進行建模模擬。繼而對學界業界已有的校正失調失配、增益失配的累加平均技術、隨機斬波技術、校正非線性、校正時序歪斜的偵測與校準等相關技術細節展開分析與比較。
為了適用於直接對時序交錯式類比數位轉換器的數位輸出做處理而無需回調原有的類比數位轉換器電路的應用情形,本文設計一種針對各種非理想效應的全數位的背景偵測與校準技術。經過失調失配、增益失配、非線性、時序歪斜等的逐級校正,將含有實際的時序交錯式類比數位轉換器的數位輸出校正到相對準確的數位輸出。
Today, the world is in the information age of a rapid development stage, the requirements of electronic hardware on accuracy, speed and other performance have also been increasingly higher and higher. For data converters, the single-channel analog-to-digital converters (ADC) have a speed-boost bottleneck due to process and other influencing factors. So the time-interleaved analog-to-digital converters which capable of increasing speed with the number of channels become more and more popular. And the dynamic power consumption of the timing interleaved analog-to-digital converters will not increase multiple with the increasing speed. However, non-ideal effects for multi-channel ADCs such as offset mismatch, gain mismatch, bandwidth mismatch, timing skew, etc., can seriously affect the performance of timing interleaved ADCs. Circuit design and calibration technologies for these non-ideal characteristics have become a hot topic in academia and industry.
In this paper, the characteristics of the time-interleaved ADC system are analyzed in detail from aspects such as sampling mode and inter-stage mismatch of time-interleaved ADCs and a model has been designed for simulation. Then we analyze and compare the technical details such as the average calibrations for offset mismatch and gain mismatch, the random chopping technique, the nonlinearity calibration and the detection and correction of the timing skew calibration.
In order to apply directly to the digital outputs of the digital-to-analog converter without adjusting the original ADC circuits, we designed an all-digital background detection and correction technology for a variety of non-ideal effects. After the step-by-step calibrations of offset mismatch, gain mismatch, nonlinearity, timing skew, etc., the actual time-interleaved ADC digital outputs are calibrated to the relatively accurate digital values.
目錄
中文摘要...................................................i
English Abstract.........................................iii
誌謝.......................................................v
表目錄....................................................ix
圖目錄....................................................xi
1 緒論.....................................................1
1.1 研究機.................................................1
1.2 論文組織...............................................2
2 時序交錯式類比數位轉換器.................................3
2.1 簡介...................................................3
2.2 輸入取樣...............................................7
2.3 類比數位轉換器校正技術的基本觀念......................10
2.4 結論..................................................12
3 時序交錯式類比數位轉換器中的各種失配效應及其校正技術....13
3.1 簡介..................................................13
3.2 失調失配與增益失配....................................13
3.3 失調失配與增益失配的校正技術..........................18
3.4 時序歪斜與帶寬失配....................................21
3.5 針對時序歪斜偵測與校準的校正技術......................23
3.6 結論..................................................35
4 非線性及其校正技術......................................37
4.1 簡介..................................................37
4.2 類比數位轉換器的非線性及其影響........................37
4.3 非線性校正技術........................................38
4.4 結論..................................................40
5 時序交錯式類比數位轉換器模型之建模技術..................41
5.1 簡介..................................................41
5.2 整體模型架構..........................................41
5.3 TI-ADC模型各係數的量測與設定..........................45
5.4 TI-ADC模型輸出與實測數據值比較........................46
5.5 結論..................................................47
6 時序交錯式類比數位轉換器全數字校正技術..................49
6.1 簡介..................................................49
6.2 校正架構..............................................49
6.3 失調失配、增益失配校正技術............................51
6.4 非線性校正技術........................................52
6.5 時序歪斜校正技術......................................55
6.6 校正結果..............................................61
6.7 結論..................................................68
7 結論與建議..............................................69
7.1 結論..................................................69
7.2 建議將來研究方向......................................69
參考文獻..................................................71
自傳......................................................77
[1] B. Murmann, ADC Performance Survey 1997-2016, Std.,2016. [Online]. Available:http://web.stanford.edu/ murmann/adcsurvey.html
[2] I. Dedic, “56Gs/s ADC : Enabling 100GbE,” in 2010 Conference on OpticalFiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, March 2010, pp. 1–3.
[3] P. Schvan, J. Bach, C. Falt, P. Flemke, R. Gibbins, Y. Greshishchev, N. Ben-Hamida,D. Pollex, J. Sitch, S. C. Wang, and J. Wolczanski, “A 24GS/s 6b ADC in 90nm CMOS,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, Feb 2008, pp. 544–634.
[4] Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S. C. Wang, “A 40gs/s 6b adc in 65nm cmos,” in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), Feb
2010, pp. 390–391.
[5] D. Crivelli, M. Hueda, H. Carrer, J. Zachan, V. Gutnik, M. D. Barco, R. Lopez, G. Hatcher, J. Finochietto, M. Yeo, A. Chartrand, N. Swenson, P. Voois, and O. Agazzi, “A 40nm cmos single-chip 50gb/s dp-qpsk/bpsk transceiver with electronic dispersion compensation for coherent optical channels,” in 2012 IEEE International Solid-State Circuits Conference, Feb 2012, pp. 328–330.
[6] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “A 90gs/s 8b 667mw 64x interleaved sar adc in 32nm digital soi cmos,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014, pp. 378–379.
[7] S. Cai, E. Z. Tabasy, A. Shafik, S. Kiran, S. Hoyos, and S. Palermo, “A 25gs/s 6b ti binary search adc with soft-decision selection in 65nm cmos,” in 2015 Symposium on VLSI Circuits (VLSI Circuits), June 2015, pp. C158–C159.
[8] Y. Duan and E. Alon, “A 6b 46gs/s adc with >23ghz bw and sparkle-code error correction,” in 2015 Symposium on VLSI Circuits (VLSI Circuits), June 2015, pp.C162–C163.
[9] J. T. Wu, C. C. Huang, and C. Y. Wang, “CMOS Ultra-High-Speed Time-Interleaved ADCs,” Nyquist AD Converters, Sensor Interfaces, and Robustness (Advances in Analog Circuit Design, 2012).Chapter 5, pp. 73-96, April 2012.
[10] L. R. Carley and T. Mukherjee, “High-speed low-power integrating cmos sample-and-hold amplifier architecture,” in Proceedings of the IEEE 1995 Custom Integrated Circuits Conference, May 1995, pp. 543–546.
[11] S. M. Jamal, D. Fu, N. C. J. Chang, P. J. Hurst, and S. H. Lewis, “A 10-b 120-msample/s time-interleaved analog-to-digital converter with digital background calibration,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1618–1627,Dec 2002.
[12] Z. M. Lee, C. Y. Wang, and J. T. Wu, “A cmos 15-bit 125-ms/s time-interleaved adc with digital background calibration,” IEEE Journal of Solid-State Circuits, vol.42,
no. 10, pp. 2149–2160, Oct 2007.
[13] D. Fu, K. C. Dyer, S. H. Lewis, and P. J. Hurst, “A digital background calibration technique for time-interleaved analog-to-digital converters,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1904–1911, Dec 1998.
[14] J. Elbornsson, “Analysis, estimation and compensation of mismatch effects in a/d converters,” Ph.D. dissertation,Linkopings universitet, 2003.
[15] J. Elbornsson, F. Gustafsson, and J. E. Eklund, “Blind adaptive equalization of mismatch errors in a time-interleaved a/d converter system,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 51, no. 1, pp. 151–158, Jan 2004.
[16] S. M. Jamal, D. Fu, M. P. Singh, P. J. Hurst, and S. H. Lewis, “Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 1, pp.130–139, Jan 2004.
[17] S. Huang and B. C. Levy, “Adaptive blind calibration of timing offset and gain mismatch for two-channel time-interleaved adcs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 6, pp. 1278–1288, June 2006.
[18] S. Huang and B. C. Levy, “Blind calibration of timing offsets for four-channel time-interleaved adcs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 4, pp. 863–876, April 2007.
[19] P. Satarzadeh, B. C. Levy, and P. J. Hurst, “Adaptive semiblind calibration of bandwidth mismatch for two-channel time-interleaved adcs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 9, pp. 2075–2088, Sept 2009.
[20] S. Huang and B. C. Levy, “Blind calibration of timing offsets for four-channel time-interleaved adcs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 4, pp. 863–876, April 2007.
[21] S. Tertinek and C. Vogel, “Reconstruction of nonuniformly sampled bandlimited signals using a differentiator-multiplier cascade,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 8, pp. 2273–2286, Sept 2008.
[22] P. Satarzadeh, B. C. Levy, and P. J. Hurst, “A parametric polyphase domain approach to blind calibration of timing mismatches for m-channel time-interleaved
adcs,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, May 2010, pp. 4053–4056.
[23] R. S. Prendergast, B. C. Levy, and P. J. Hurst, “Reconstruction of band-limited periodic nonuniformly sampled signals through multirate filter banks,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 8, pp.1612–1622, Aug 2004.
[24] C. H. Law, P. J. Hurst, and S. H. Lewis, “A four-channel time-interleaved adc with digital calibration of interchannel timing and memory errors,” IEEE Journal of
Solid-State Circuits, vol. 45, no. 10, pp. 2091–2103, Oct 2010.
[25] H. Wei, P. Zhang, B. D. Sahoo, and B. Razavi, “An 8 bit 4 gs/s 120 mw cmos adc,”IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1751–1761, Aug 2014.
[26] C.-Y. Wang and J.-T. Wu, “A background timing-skew calibration technique for time-interleaved analog-to-digital converters,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 53, no. 4, pp. 299–303, April 2006.
[27] C. C. Huang, C. Y. Wang, and J. T. Wu, “A cmos 6-bit 16-gs/s time-interleaved adc using digital background calibration techniques,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 4, pp. 848–858, April 2011.
[28] C. Y. Wang, “Multi-phase timing skew calibration and its application to time-interleaved adcs,” Ph.D. dissertation, National Chiao-Tung University, 2010.
[29] H. Jin and E. K. F. Lee, “A digital-background calibration technique for minimizing timing-error effects in time-interleaved adcs,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 47, no. 7, pp. 603–613, Jul 2000.
[30] B. Provost and E. Sanchez-Sinencio, “On-chip ramp generators for mixed-signal bist and adc self-test,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp.263–273, Feb 2003.
[31] M. El-Chammas and B. Murmann, “General analysis on the impact of phase-skew in time-interleaved adcs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 902–910, May 2009.
[32] M. El-Chammas and B. Murmann, “A 12-gs/s 81-mw 5-bit time-interleaved flash adc with background timing skew calibration,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 4, pp. 838–847, April 2011.
[33] B. Sankur and L. A. Gerhardt, “Reconstruction of signals from nonuniform samples,” in In IEEE International Conference on Communications, June 1973, pp.15.13–15.18.
[34] C. R. Grace, P. J. Hurst, and S. H. Lewis, “A 12-bit 80-msample/s pipelined adc with bootstrapped digital calibration,” IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1038–1046, May 2005.
[35] B. Peng, H. Li, P. Lin, and Y. Chiu, “An offset double conversion technique for digital calibration of pipelined adcs,” IEEE Transactions on Circuits and SystemsII: Express Briefs, vol. 57, no. 12, pp. 961–965, Dec 2010.
[36] G. Taylor and I. Galton, “A mostly-digital variable-rate continuous-time delta-sigma modulator adc,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp.2634–2646, Dec 2010.
[37] A. Panigada and I. Galton, “A 130 mw 100 ms/s pipelined adc with 69 db sndr enabled by digital harmonic distortion correction,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3314–3328, Dec 2009.
[38] M. Gande, H. Venkatram, H. Y. Lee, J. Guerber, and U. K. Moon, “Blind calibration algorithm for nonlinearity correction based on selective sampling,” IEEE Journal of
Solid-State Circuits, vol. 49, no. 8, pp. 1715–1724, Aug 2014.
[39] C. W. Fan and J. T. Wu, “Jitter measurement and compensation for analog-to-digital converters,” IEEE Transactions on Instrumentation and Measurement, vol. 58,
no. 11, pp. 3874–3884, Nov 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top