跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:司馬仲傑
研究生(外文):Robert, Gdowski
論文名稱:在物聯網與霧網路環境中的分散式探索網路資源
論文名稱(外文):Distributed discovery of resources in IoT and Fog environment
指導教授:黃經堯黃經堯引用關係
指導教授(外文):Huang, ChingYao
口試委員:黃經堯邵家健林甫俊張一介楊人順
口試委員(外文):Huang, ChingYaoZao, Kar-kinLin, FuChunChang, YiChiehRenShun Yang
口試日期:2017-07-18
學位類別:博士
校院名稱:國立交通大學
系所名稱:電機資訊國際學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:102
中文關鍵詞:對等網路物联网霧運算德勞內三角化Data Distribution Service
外文關鍵詞:Peer-to-PeerInternet of ThingsFog ComputingDelaunay triangulationData Distribution Service
相關次數:
  • 被引用被引用:1
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:1
隨著物聯網時代的到來,我們見證智慧裝置與服務成為商務解決方案中的關鍵部分,然而,為了使物聯網變得真正普及,一個廣域網路規模的分散式物聯網服務索引是必要的。此方法將與現行封閉物聯網資源於密封環境中且限制遍佈資源之存取與協調的專屬雲端垂直解決方案比較。
本論文提升了相連物聯網資源的視野,每項資源或資源集合都表示為允許分散資源發現、選擇、與存取的點對點覆蓋網路中的一個節點(代理人),我們分析物聯網對點對點覆蓋的特定環境需求,並與現行的解決方案做比較。而後提出基於三維德洛涅三角剖分的新型覆蓋設計,其支援空間查詢、節點移動性、發布/訂閱與要求/應答的發現模式,再對不同架構情況下之覆蓋的訊息負擔進行效能分析。最後,描述一個基於第五代移動通訊技術霧運算生態系統的部署情境,並強調本論文提出的解決方案之適當性。
At the dawn of the IoT era we are witnessing smart devices and services becoming a pivotal part of business solutions. However, in order for IoT to become truly pervasive, a WAN scale distributed IoT service indexing is required. It will contrast with current IoT discovery mechanisms realized through the proprietary, cloud based vertical solutions which enclose IoT resources into hermetic environments and limit ubiquitous resource access and orchestration.
This dissertation promotes the vision of connected IoT resources. Every resource or federation of resources is represented as a node (agent) in a P2P overlay which allows distributed resource discovery, selection and access. IoT environment-specific requirements towards construction of a P2P overlay are analyzed and compared against existing solutions. Later a proposition of novel overlay design is presented that is based on a 3-dimensional Delaunay triangulation which supports spatial query, node mobility as well as publish/subscribe and request/reply discovery modes. A performance analysis in terms of messaging overhead with different architectures cases of the overlay is performed. Finally, a deployment scenario based on Fog computing ecosystem for 5G communication technology is described, with emphasis on aptitude of the proposed solution.
English Abstract ii
List of Tables ix
List of Figures xi
I Introduction 1
1.1 Dissertation outline and contributions 1
1.2 IoT - An Ongoing Revolution 2
1.3 Fog - An IoT Enabler 3
1.4 What are the resources 6
1.4.1 IoT resources 6
1.4.2 IoT related resources 7
1.4.2.1 Obdo 7
1.4.2.2 Nöw 8
1.4.3 Virtual resources 9
1.4.4 Resource life cycle 10
II IoT platform 13
2.1 Platforms for Things overview 13
2.2 ATLAS - an IoT platform design 17
2.2.1 Introduction 17
2.2.2 Functionality 18
2.2.3 Architecture 18
2.2.3.1 Access Manager 20
2.2.3.2 Selection Manager 20
2.2.3.2 Discovery Manager 21
2.2.4 Impact 23
III. Discovery in IoT environment 27
3.1 Introduction to resource discovery 27
3.1.1 Centralized discovery 27
3.1.2 Decentralized discovery 27
3.1.3 Distributed discovery 28
3.2 Existing protocols 29
3.2.1 Proximity discovery 29
3.2.2 Smart space discovery 31
3.2.3 Cloud based discovery 32
3.3 Discovery protocol requirements 34
3.3.1 Specification of IoT environment 34
3.3.1.1 Machine based 34
3.3.1.2 Deployment based 35
3.3.1.3 Application based 36
3.3.1.4 Resource based 36
3.3.2 Requirements for the discovery 37
3.4 Distributed discovery approaches 38
3.4.1 Peer-to-Peer overlay features 38
3.4.1.1 Cost 39
3.4.1.2 Latency 39
3.4.1.3 Robustness 39
3.4.1.4 Independency 40
3.4.1.5 Plug and Play 40
3.4.2 Overall design considerations 40
3.4.3 Location based overlay 41
3.4.4 State of art 42
3.4.4.1 Distributed Hash Table (DHT) 42
3.4.4.2 Multi attribute overlay 43
3.4.4.3 Dimension reduction 44
3.4.4.4 Space partitioning 45
3.4.4.4.1 Hierarchical partitioning 45
3.4.4.4.2 Incremental partitioning 47
IV Delaunay triangulation based discovery 51
4.1 Design approaches 51
4.1.1 2D Delaunay triangulation based overlay 51
4.1.1.1 Delaunay triangulation 51
4.1.1.2 Procedures 52
4.1.1.2.1 Routing 52
4.1.1.2.2 Joining/Leaving 53
4.1.1.2.3 Query resolution procedure 53
4.1.1.3 Cost Analysis 54
4.1.1.3.1 Request/reply 55
4.1.1.3.2 Publish/subscribe 55
4.1.1.3.3 Overlay overhead 56
4.1.2 3D Delaunay triangulation based overlay 57
4.1.2.1 3D Delaunay triangulation 57
4.1.2.2 Procedures 58
4.1.2.2.1 Spatial Query 58
4.1.2.3 Cost Analysis 59
4.1.3 Double 3D P2P overlay system 61
4.1.3.1 Procedures 62
4.1.3.2 Cost analysis 62
4.2 Long Range Contacts 63
4.3 Mobility support 64
V. Application - ITRI - NCTU Duan Chin Project 67
5.1 Introduction 67
5.2 System model 69
5.3 DDS based consumer-provider association 72
5.3.1 DDS overview 73
5.3.2 Vertical DDS design to fit the system 74
5.3.3 Horizontal DDS design to fit the system 76
5.3.3.1 DDS scalability issue 76
5.4 Proposed application level multicast 77
5.4.1 System description 78
5.4.2 The overlay 81
5.4.3 Cost Analysis 81
5.5 Deployment architecture 84
5.6 Deployment scenario 85
5.7 Perspective 87
VI Conclusion 89
Bibliography 91
[1] B. J.Lheureux, A.Velosa, T.Friedman, M.Pezzini, J.Forsman, W. R.Schulte, R. L.Sallam, E.Perkins, A.Thomas, M.Cantara, andK.Guttridge, “Best Practices in Exploring and Understanding the Full Scope of IoT Solutions,” 2015.
[2] F.Bonomi, R.Milito, J.Zhu, andS.Addepalli, “Fog computing and its role in the internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing - MCC ’12, 2012, p. 13.
[3] “Multi-access Edge Computing.” [Online]. Available: http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing.
[4] N.Fernando, S. W.Loke, andW.Rahayu, “Mobile cloud computing: A survey,” Futur. Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, Jan.2013.
[5] “OpenFog Consortium.” [Online]. Available: https://www.openfogconsortium.org.
[6] OpenFog Consortium, “OpenFog Reference Architecture for Fog Computing,” 2017.
[7] “EVRYTHNG.” [Online]. Available: https://evrythng.com/.
[8] “Airbnb.” [Online]. Available: https://www.airbnb.com/.
[9] “Uber.” [Online]. Available: www.uber.com/‎.
[10] “TaskRabbit.” [Online]. Available: www.taskrabbit.com/.
[11] “Drop Messages.” [Online]. Available: http://www.dropmessages.com/.
[12] “Pokémon Go.” [Online]. Available: www.pokemongo.com/.
[13] “Second Life.” [Online]. Available: secondlife.com/.
[14] “World of Warcraft.” [Online]. Available: https://worldofwarcraft.com/.
[15] A.Sheth, C.Henson, andS.Sahoo, “Semantic sensor web,” Internet Comput. IEEE, 2008.
[16] “Open Geospatial Consortium.” [Online]. Available: http://www.opengeospatial.org/.
[17] A.Zafeiropoulos andD.Spanos, “Data management in sensor networks using semantic web technologies,” Data Manag. …, 2009.
[18] J.Soldatos andK.Stamatis, “Semantic web technologies for ubiquitous computing resource management in smart spaces,” Int. J. …, 2007.
[19] A.Kaustell, M.Saleemi, andT.Rosqvist, “Framework for smart space application development,” Proc. …, 2011.
[20] E.Warriach andE.Kaldeli, “Heterogeneous device discovery framework for the Smart Homes,” GCC Conf. …, 2011.
[21] “BACnet Website.” [Online]. Available: http://www.bacnet.org/.
[22] “KNX Association [Official website].” [Online]. Available: http://www.knx.org/.
[23] N.Ramanathan, L.Balzano, D.Estrin, M.Hansen, T.Harmon, J.Jay, W.Kaiser, andG.Sukhatme, “Designing Wireless Sensor Networks as a Shared Resource for Sustainable Development,” in 2006 International Conference on Information and Communication Technologies and Development, 2006, pp. 256–265.
[24] Y.Yu, L.Rittle, V.Bhandari, andJ.LeBrun, “Supporting concurrent applications in wireless sensor networks,” … Embed. networked Sens. …, 2006.
[25] S.Bhattacharya andA.Saifullah, “Multi-application deployment in shared sensor networks based on quality of monitoring,” Real-Time …, 2010.
[26] J.Steffan, L.Fiege, M.Cilia, andA.Buchmann, “Towards Multi-Purpose Wireless Sensor Networks,” in 2005 Systems Communications (ICW’05, ICHSN’05, ICMCS’05, SENET’05), pp. 336–341.
[27] A.Tavakoli, A.Kansal, andS.Nath, “On-line sensing task optimization for shared sensors,” … Inf. Process. Sens. …, 2010.
[28] C. N.Jeffrey Shneidman, “Why Markets Could (But Don’t Currently) Solve Resource Allocation Problems in Systems.”
[29] C.Efstratiou, “Challenges in Supporting Federation of Sensor Networks,” in NSF/FIRE Workshop on Federating Computing Resources, Princeton, NJ, May 11-12, 2010, 2010.
[30] A.Kansal, S.Nath, J.Liu, andF.Zhao, “SenseWeb: An Infrastructure for Shared Sensing,” IEEE Multimed., vol. 14, no. 4, pp. 8–13, Oct.2007.
[31] D.Stromberg andF.Lantz, “Operator control of shared resources in sensor networks,” in Sixth International Conference of Information Fusion, 2003. Proceedings of the, 2003, vol. 1, pp. 575–582.
[32] V.Gupta, E.Tovar, K.Lakshmanan, andR. (Raj)Rajkumar, “A Framework for Programming Sensor Networks with Scheduling and Resource-Sharing Optimizations,” in 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications, 2011, vol. 2, pp. 37–40.
[33] D.Guinard, S.Member, V.Trifa, S.Karnouskos, P.Spiess, andD.Savio, “Interacting with the SOA-Based Internet of Things : Discovery , Query , Selection , and On-Demand Provisioning of Web Services,” IEEE Trans. Serv. Comput., vol. 3, no. 3, pp. 223–235, Jul.2010.
[34] “FI-WARE Internet of Things (IoT) Services Enablement.” [Online]. Available: http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Internet_of_Things_(IoT)_Services_Enablement.
[35] ETSI, “ETSI TS 102 690 v2.1.1 (2013-10) Machine-to-Machine communications (M2M); Functional architecture,” 2013.
[36] B.Mandler, F.Antonelli, R.Kleinfeld, C.Pedrinaci, D.Carrera, A.Gugliotta, D.Schreckling, I.Carreras, D.Raggett, M.Pous, C. V.Villares, andV.Trifa, “COMPOSE -- A Journey from the Internet of Things to the Internet of Services,” in 2013 27th International Conference on Advanced Information Networking and Applications Workshops, 2013, pp. 1217–1222.
[37] H.Dempo andM.Yoshida, “CUBIQ: Cross UBIQuitous Platform Architecture,” in 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet, 2010, pp. 213–216.
[38] T.Teixeira, S.Hachem, V.Issarny, andN.Georgantas, “Service Oriented Middleware for the Internet of Things: A Perspective,” in Towards a Service-Based Internet: 4th European Conference, ServiceWave 2011, Poznan, Poland, October 26-28, 2011. Proceedings, W.Abramowicz, I. M.Llorente, M.Surridge, A.Zisman, andJ.Vayssière, Eds.Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 220–229.
[39] R.Gdowski, M. B.Safianowska, andC. Y.Huang, “Atlas: An Agent Based IoT Platform for Utilizing Private Device Potential,” in 11th IEEE VTS Asia Pacific Wireless Communication Symposium, 2014.
[40] K.Främling, I.Oliver, J.Honkola, andJ.Nyman, “Smart Spaces for Ubiquitously Smart Buildings,” in 2009 Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2009, pp. 295–300.
[41] Eng Keong Lua, J.Crowcroft, M.Pias, R.Sharma, andS.Lim, “A survey and comparison of peer-to-peer overlay network schemes,” IEEE Commun. Surv. Tutorials, vol. 7, no. 2, pp. 72–93, 2005.
[42] “The Physical Web.” [Online]. Available: https://google.github.io/physical-web/. [Accessed: 10-Jul-2017].
[43] OASIS, “OASIS Web Services Dynamic Discovery (WS-Discovery) Version 1.1,” 2009.
[44] “DNS Service Discovery (DNS-SD).” [Online]. Available: http://www.dns-sd.org/. [Accessed: 03-Jul-2017].
[45] “Multicast DNS.” [Online]. Available: http://www.multicastdns.org/. [Accessed: 03-Jul-2017].
[46] UPnP Forum, “UPnP Device Architecture 2.0.”
[47] “X10Wiki.” [Online]. Available: http://kbase.x10.com/wiki/Main_Page. [Accessed: 03-Jul-2017].
[48] Choonhwa Lee, D.Nordstedt, andS.Helal, “Enabling smart spaces with OSGi,” IEEE Pervasive Comput., vol. 2, no. 3, pp. 89–94, Jul.2003.
[49] “Google Cloud IoT - Fully managed IoT services from Google | Google Cloud Platform.” [Online]. Available: https://cloud.google.com/solutions/iot/. [Accessed: 03-Jul-2017].
[50] “IoT Platform for Connected Devices| Xively by LogMeIn.” [Online]. Available: https://www.xively.com/. [Accessed: 03-Jul-2017].
[51] “Enterprise IoT Solutions and Platform Technology.” [Online]. Available: https://www.thingworx.com/. [Accessed: 03-Jul-2017].
[52] S.Liang andC.-Y.Huang, “GeoCENS: A Geospatial Cyberinfrastructure for the World-Wide Sensor Web,” Sensors, vol. 13, no. 10, pp. 13402–13424, Oct.2013.
[53] L.Gong, “Project JXTA: A Technology Overview,” 2001. [Online]. Available: http://admis.fudan.edu.cn/member/yztang/Papers/P2P/industry/JXTA TechOverview.pdf. [Accessed: 10-Jul-2017].
[54] X.Jin, D.Zhang, Q.Zou, G.Ji, andX.Qian, “Where searching will go in Internet of Things?,” in 2011 IFIP Wireless Days (WD), 2011, pp. 1–3.
[55] R.Want, B. N.Schilit, andS.Jenson, “Enabling the Internet of Things,” Computer (Long. Beach. Calif)., vol. 48, no. 1, pp. 28–35, Jan.2015.
[56] B.Beverly Yang andH.Garcia-Molina, “Designing a super-peer network,” in Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, pp. 49–60.
[57] “BitTorrent.org.” [Online]. Available: http://www.bittorrent.org/introduction.html. [Accessed: 10-Jul-2017].
[58] I.Stoica, R.Morris, D.Karger, M. F.Kaashoek, H.Balakrishnan, I.Stoica, R.Morris, D.Karger, M. F.Kaashoek, andH.Balakrishnan, “Chord: A scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 149–160, Oct.2001.
[59] S.Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf.
[60] C.Du, Z.Zhou, S.Ying, J.Niu, andQ.Wang, “An efficient indexing and query mechanism for ubiquitous IoT services,” Int. J. Ad Hoc Ubiquitous Comput., vol. 18, no. 4, p. 245, 2015.
[61] V.Kantere, S.Skiadopoulos, andT.Sellis, “Storing and Indexing Spatial Data in P2P Systems,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 287–300, Feb.2009.
[62] S.Ratnasamy, P.Francis, M.Handley, R.Karp, S.Schenker, S.Ratnasamy, P.Francis, M.Handley, R.Karp, andS.Shenker, “A scalable content-addressable network,” in Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications - SIGCOMM ’01, 2001, vol. 31, no. 4, pp. 161–172.
[63] F.Pramudianto, B.Avila, J.Pulman, M.Jarke, andM.Jahn, “Extending Semantic Device Discovery with Synonym of Terms,” in 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing, 2014, pp. 81–88.
[64] Haiying Shen, A.Apon, andCheng-Zhong Xu, “LORM: Supporting low-overhead P2P-based range-query and multi-attribute resource management in grids,” in 2007 International Conference on Parallel and Distributed Systems, 2007, pp. 1–8.
[65] H.Dong, F. K.Hussain, andE.Chang, “Semantic Web Service matchmakers: state of the art and challenges,” Concurr. Comput. Pract. Exp., vol. 25, no. 7, pp. 961–988, May2013.
[66] L.Dekar andH.Kheddouci, “A Resource Discovery Scheme for Large Scale Ad Hoc Networks Using a Hypercube-Based Backbone,” in 2009 International Conference on Advanced Information Networking and Applications, 2009, pp. 293–300.
[67] W.Wang, S.De, G.Cassar, andK.Moessner, “An experimental study on geospatial indexing for sensor service discovery,” Expert Syst. Appl., vol. 42, no. 7, pp. 3528–3538, 2015.
[68] M.Cai, M.Frank, J.Chen, andP.Szekely, “MAAN: a multi-attribute addressable network for grid information services,” in Proceedings. First Latin American Web Congress, 2003, pp. 184–191.
[69] H. M. N. D.Bandara andA. P.Jayasumana, “Collaborative applications over peer-to-peer systems–challenges and solutions,” Peer-to-Peer Netw. Appl., vol. 6, no. 3, pp. 257–276, Sep.2013.
[70] A. R.Bharambe, M.Agrawal, S.Seshan, A. R.Bharambe, M.Agrawal, andS.Seshan, “Mercury,” in Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications - SIGCOMM ’04, 2004, vol. 34, no. 4, p. 353.
[71] T.Asano, D.Ranjan, T.Roos, E.Welzl, andP.Widmayer, “Space-filling curves and their use in the design of geometric data structures,” Theor. Comput. Sci., vol. 181, no. 1, pp. 3–15, Jul.1997.
[72] Yanfeng Shu, Beng Chin Ooi, Kian-Lee Tan, andAoying Zhou, “Supporting Multi-Dimensional Range Queries in Peer-to-Peer Systems,” in Fifth IEEE International Conference on Peer-to-Peer Computing (P2P’05), 2005, pp. 173–180.
[73] P.Ganesan, B.Yang, andH.Garcia-Molina, “One torus to rule them all,” in Proceedings of the 7th International Workshop on the Web and Databases colocated with ACM SIGMOD/PODS 2004 - WebDB ’04, 2004, pp. 19–24.
[74] C.Schmidt andM.Parashar, “Flexible information discovery in decentralized distributed systems,” in High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on, 2003, pp. 226–235.
[75] E.Carlini, A.Lulli, andL.Ricci, “dragon: Multidimensional range queries on distributed aggregation trees,” Futur. Gener. Comput. Syst., vol. 55, pp. 101–115, Feb.2016.
[76] X.Yang andY.Hu, “A Scalable Index Architecture for Supporting Multi-Dimensional Range Queries in Peer-to-Peer Networks,” in 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2006, pp. 1–10.
[77] F.Paganelli andD.Parlanti, “A DHT-Based Discovery Service for the Internet of Things,” J. Comput. Networks Commun., vol. 2012, pp. 1–11, Oct.2012.
[78] Y.Chawathe, S.Ramabhadran, S.Ratnasamy, A.LaMarca, S.Shenker, andJ.Hellerstein, “A case study in building layered DHT applications,” ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 97–108, Oct.2005.
[79] K.Aberer, P.Cudré-Mauroux, A.Datta, Z.Despotovic, M.Hauswirth, M.Punceva, andR.Schmidt, “P-Grid: a self-organizing structured P2P system,” ACM SIGMOD Rec., vol. 32, no. 3, pp. 29–33, Sep.2003.
[80] O.Beaumont, A.-M.Kermarrec, L.Marchal, andE.Riviere, “VoroNet: A scalable object network based on Voronoi tessellations,” in 2007 IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1–10.
[81] J.Tang, Z.Zhou, L.Shu, J.Niu, J.Liu, Q.Hu, andQ.Wang, “Skewness-aware clustering tree for unevenly distributed spatial sensor nodes in smart city,” Int. J. Commun. Syst., vol. 26, no. 9, pp. 1143–1162, Sep.2013.
[82] S.Mayer, D.Guinard, andV.Trifa, “Searching in a web-based infrastructure for smart things,” in 2012 3rd IEEE International Conference on the Internet of Things, 2012, pp. 119–126.
[83] A.Kovacevic, N.Liebau, andR.Steinmetz, “Globase.KOM - A P2P Overlay for Fully Retrievable Location-based Search,” in Seventh IEEE International Conference on Peer-to-Peer Computing (P2P 2007), 2007, pp. 87–96.
[84] Mei Li, Wang-Chien Lee, A.Sivasubramaniam, andJing Zhao, “SSW: A Small-World-Based Overlay for Peer-to-Peer Search,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 6, pp. 735–749, Jun.2008.
[85] C.Zhang, A.Krishnamurthy, andR. Y.Wang, “Skipindex: Towards a scalable peer-to-peer index service for high dimensional data,” Dep. Comput. Sci. Princet. Univ. New Jersey, USA, Tech. Rep, pp. 703–704, 2004.
[86] S.Asaduzzaman andG.vBochmann, “Geop2p: an adaptive and fault-tolerant peer-to-peer overlay for location based search,” in International Conference on Distributed Computing Systems (ICDCS), 2009.
[87] Z.Xu andZ.Zhang, “Building low-maintenance expressways for p2p systems,” Hewlett-Packard Labs, Palo Alto, CA, Tech. Rep. HPL-2002-41, 2002.
[88] S.De, G.Cassar, B.Christophe, S.BenFredj, M.Bauer, N.Santos, T.Jacobs, E.Zeybek, R.delas Heras, G.Mart’\in, andothers, “Concepts and solutions for entity-based discovery of IoT resources and managing their dynamic associations,” EC FP7 IoT-A Deliv., vol. 4, 2012.
[89] A.Guttman, Antonin, Guttman, andAntonin, “R-trees: a dynamic index structure for spatial searching,” in Proceedings of the 1984 ACM SIGMOD international conference on Management of data - SIGMOD ’84, 1984, vol. 14, no. 2, p. 47.
[90] W.Wang, S.De, G.Cassar, andK.Moessner, “An experimental study on geospatial indexing for sensor service discovery,” Expert Syst. Appl., vol. 42, no. 7, pp. 3528–3538, May2015.
[91] B.Naylor, “Binary space partitioning trees as an alternative representation of polytopes,” Comput. Des., vol. 22, no. 4, pp. 250–252, May1990.
[92] J. L.Bentley andJ.Louis, “Multidimensional binary search trees used for associative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep.1975.
[93] F.Banaei-Kashani andC.Shahabi, “SWAM: a family of access methods for similarity-search in peer-to-peer data networks,” in Proceedings of the Thirteenth ACM conference on Information and knowledge management - CIKM ’04, 2004, pp. 304–313.
[94] Y.Wang andX.-Y.Li, “Efficient Delaunay-based localized routing for wireless sensor networks,” Int. J. Commun. Syst., vol. 20, no. 7, pp. 767–789, Jul.2007.
[95] P.Maymounkov andD.Mazières, “Kademlia: A Peer-to-Peer Information System Based on the XOR Metric,” Springer, Berlin, Heidelberg, 2002, pp. 53–65.
[96] M.Picone, M.Amoretti, andF.Zanichelli, “GeoKad: A P2P distributed localization protocol,” in 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010, pp. 800–803.
[97] G.Brambilla, M.Picone, M.Amoretti, andF.Zanichelli, “An Adaptive Peer-to-Peer Overlay Scheme for Location-Based Services,” in 2014 IEEE 13th International Symposium on Network Computing and Applications, 2014, pp. 181–188.
[98] C.Gross, D.Stingl, B.Richerzhagen, A.Hemel, R.Steinmetz, andD.Hausheer, “Geodemlia: A robust peer-to-peer overlay supporting location-based search,” in 2012 IEEE 12th International Conference on Peer-to-Peer Computing (P2P), 2012, pp. 25–36.
[99] C.Gross, B.Richerzhagen, D.Stingl, J.Weber, D.Hausheer, andR.Steinmetz, “GeoSwarm: A multi-source download scheme for peer-to-peer location-based services,” in IEEE P2P 2013 Proceedings, 2013, pp. 1–10.
[100] B.Heep, M.Florian, J.Volz, andI.Baumgart, “Overdrive an overlay-based geocast service for smart traffic applications,” in 2013 10th Annual Conference on Wireless On-demand Network Systems and Services (WONS), 2013, pp. 1–8.
[101] B.Wong, A.Slivkins, andE. G.Sirer, “Meridian: a lightweight network location service without virtual coordinates,” in Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications - SIGCOMM ’05, 2005, vol. 35, no. 4, pp. 85–96.
[102] Weisheng Si andS.Selvakennedy, “A Position-Based Deployment and Routing Approach for Directional Wireless Mesh Networks,” in 2008 Proceedings of 17th International Conference on Computer Communications and Networks, 2008, pp. 1–8.
[103] M.DeBerg, O.Cheong, M.VanKreveld, andM.Overmars, Computational Geometry: Algorithms and Applications. Berlin, Heidelberg: Springer, 2008.
[104] J.Kleinberg, “The small-world phenomenon: an algorithmic perspective,” in Proceedings of the thirty-second annual ACM symposium on Theory of computing - STOC ’00, 2000, pp. 163–170.
[105] A.Tumbde andS.Venugopalan, “A Voronoi Partitioning Approach to Support Massively Multiplayer Online Games,” 2004. [Online]. Available: http://pages.cs.wisc.edu/~vshree/cs740/Voronoi.pdf. [Accessed: 10-Jul-2017].
[106] Shun-Yun Hu, Jui-Fa Chen, andTsu-Han Chen, “VON: a scalable peer-to-peer network for virtual environments,” IEEE Netw., vol. 20, no. 4, pp. 22–31, Jul.2006.
[107] F.Lu, S.Parkin, andG.Morgan, “Load balancing for massively multiplayer online games,” in Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games - NetGames ’06, 2006, pp. 1–11.
[108] S.-Y.Hu, S.-C.Chang, andJ.-R.Jiang, “Voronoi State Management for Peer-to-Peer Massively Multiplayer Online Games,” in 2008 5th IEEE Consumer Communications and Networking Conference, 2008, pp. 1134–1138.
[109] S.-Y.Hu andK.-T.Chen, “VSO: Self-Organizing Spatial Publish Subscribe,” in 2011 IEEE Fifth International Conference on Self-Adaptive and Self-Organizing Systems, 2011, pp. 21–30.
[110] M.Ghaffari, B.Hariri, S.Shirmohammadi, andD. T.Ahmed, “A Dynamic Networking Substrate for Distributed MMOGs,” IEEE Trans. Emerg. Top. Comput., vol. 3, no. 2, pp. 289–302, Jun.2015.
[111] M.Albano, L.Ricci, M.Baldanzi, andR.Baraglia, “VoRaQue: Range queries on Voronoi overlays,” in 2008 IEEE Symposium on Computers and Communications, 2008, pp. 495–500.
[112] M.Mordacchini, L.Ricci, L.Ferrucci, M.Albano, andR.Baraglia, “Hivory: Range Queries on Hierarchical Voronoi Overlays,” in 2010 IEEE Tenth International Conference on Peer-to-Peer Computing (P2P), 2010, pp. 1–10.
[113] Y.Teranishi, S.Takeuchi, andK.Harumoto, “HDOV: an overlay network for wide area spatial data collection,” in Proceedings of the 2011 ACM Symposium on Applied Computing - SAC ’11, 2011, pp. 506–513.
[114] F.Araujo andL.Rodrigues, “Geopeer: a location-aware peer-to-peer system,” in Third IEEE International Symposium on Network Computing and Applications, 2004. (NCA 2004). Proceedings., 2004, pp. 39–46.
[115] S.Tsuboi, T.Oku, M.Ohnishi, andS.Ueshima, “Generating Skip Delaunay Network for P2P Geocasting,” in Sixth International Conference on Creating, Connecting and Collaborating through Computing (C5 2008), 2008, pp. 179–186.
[116] N. J. A.Harvey, M. B.Jones, S.Saroiu, M.Theimer, andA.Wolman, “SkipNet: a scalable overlay network with practical locality properties,” Proceedings of the 4th conference on USENIX Symposium on Internet Technologies and Systems - Volume 4. USENIX Association, pp. 9–9, 2003.
[117] B.Wang, J.Qu, X.Wang, G.Wang, andM.Kitsuregawa, “VGQ-Vor: extending virtual grid quadtree with Voronoi diagram for mobile k nearest neighbor queries over mobile objects,” Front. Comput. Sci., vol. 7, no. 1, pp. 44–54, Feb.2013.
[118] M.Hojo, H.Nagao, T.Miyao, andK.Shudo, “A two-dimensional structured overlay based on flexible routing tables,” in 2015 IEEE Symposium on Computers and Communication (ISCC), 2015, pp. 289–294.
[119] M.Steiner andE.Biersack, “A fully distributed peer to peer structure based on 3D Delaunay Triangulation,” Proc. Algotel-Septiemes, 2005.
[120] R.Baraglia, P.Dazzi, B.Guidi, andL.Ricci, “GoDel: Delaunay overlays in P2P networks via Gossip,” in 2012 IEEE 12th International Conference on Peer-to-Peer Computing (P2P), 2012, pp. 1–12.
[121] R.Bellman, Adaptive control processes : a guided tour. Princeton: Princeton University Press, 1961.
[122] OMG, “Data Distribution Service version 1.4,” 2015.
[123] OMG, “The Real-time Publish-Subscribe (RTPS) Wire Protocol DDS Interoperability Wire Protocol Specification v2.2,” 2014.
[124] N.Wang, D. C.Schmidt, H.van’t Hag, andA.Corsaro, “Toward an adaptive data distribution service for dynamic large-scale network-centric operation and warfare (NCOW) systems,” in MILCOM 2008 - 2008 IEEE Military Communications Conference, 2008, pp. 1–7.
[125] C.Esposito, “Data Distribution Service (DDS) Limitations for Data Dissemination w.r.t. Large-scale Complex Critical Infrastructures (LCCI),” 2011. [Online]. Available: http://www.mobilab.unina.it/Reports/DataDiss.pdf. [Accessed: 10-Jul-2017].
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top