(3.238.186.43) 您好!臺灣時間:2021/03/01 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱侑德
研究生(外文):Chiu, You-Te
論文名稱:限制最大導通時間之雙迴路混和模式平滑轉換切換式鋰電池充電器
論文名稱(外文):A Limited Maximum On-Time Switching Based Li-ion Battery Charger with Dual-Loop Mixed-Mode Smooth Transition
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
口試委員:洪崇智陳柏宏李育民
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:鋰離子電池充電器平滑轉換
外文關鍵詞:Li-ion batterychargersmooth transition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
進入了21世紀之後,伴隨著世界的各種行動裝置需求趨勢,如智慧型手機、平板裝置和筆記型電腦等設備迅速的普及化,近幾年更是成為每個人不可或缺的隨身工具。目前的智慧型攜帶裝置其主要供應能源大多還是以充電電池為主,而做為其中之一的供應能源載體,鋰離子電池自然也在現今科技發展中扮演著重要的角色;與此同時為了因應鋰離子電池所產生的各種規格與性能需求,對於該如何把能量有效的存進電池內,充電系統的設計規格要求也逐漸地變得比以往電路來的更加複雜。
本論文考量到未來相關智慧型電子產品趨勢,需要較高能源轉換效率,故採用切換式鋰離子電池充電器作為基礎架構,使外部能源能夠在較少的損耗下為電池進行充電;並考量到電池本身規格,本次設計延伸降壓變換器電路來達到所需之充電規格。同時為了使充電過程能順利執行,電路限制最大導通時間,並採用混合電壓電流模式平滑轉換方法,達到控制功率電晶體開通時間,解決充電模式間切換時的模式震盪;另外設計電路使用適性關閉時間控制方法,減少電路充電後期的大振福漣波所造成的雜訊干擾。
本論文呈現兩顆充電晶片,皆透過台灣積體電路公司提供之0.35微米標準互補式金氧半製程實現,最後量測之整體晶片面積為1.647mm *1.365mm,功率電晶體操作切換頻率設定1MHz,輸入電壓為5V,充電器輸出電壓為4.2V ~ 4.8V,量測之充電功率可以達到83%。
After entering the 21st century, along with the demand trend of portable devices, smart phones, tablet PCs, notebook computers, and other devices have gotten very popular quickly. All devices become an indispensable portable tool for everyone. In recent years, rechargeable batteries are main energy supply of intelligent portable devices, and as one of the energy carrier supplies, lithium-ion battery naturally in today's technology development plays an important role. At the same time, in order to keep up Lithium-ion battery produced by a variety of specifications and performance requirements, the specifications of charging system design have gradually become more and more complicated than it used to be.
In addition to the requirements for high energy conversion efficiency, the charging system must consider reducing the charging time as much as possible, while avoiding from overcharging the battery. There is no doubt that several topics are very important for the lithium battery charger design, such as charging multiple output targets, reducing the size of the charging system, achieving stability of the whole system, smoothly providing energy to the battery, and so on. This paper takes into account the future trend of intelligent electronic products and the use of the switching regulator as infrastructure so that the need for higher energy conversion efficiency and less energy consumption for the battery charge can be achieved. Considering battery specifications, this design extends the buck converter circuit to achieve the required charger specifications. Furthermore, to have the efficient charging process successfully implemented, the charger limits the maximum on-time of power MOS and uses a voltage-current mixed-signal smooth conversion method to reduce the ripple between the charging mode switching. The charger also utilizes adaptive closing time control to reduce the ripple in the last stage of the charging process.
The two charger chips presented in this thesis were fabricated by TSMC 0.35μm mixed‐signal CMOS process. The overall chip area is 1.647mm * 1.365mm and the switching frequency of the power transistor is 1MHz with the supply voltage of 5V. The output voltage is 4.2V ~ 4.8V and the measured charging efficiency can reach 83%.
摘要 i
ABSTRACT ii
ACKNOWEDGEMENTS iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 鋰離子電池與充電器概論 4
2.1 鋰離子電池簡介 4
2.1.1 鋰離子電池基本特性 6
2.1.2 鋰離子電池等效模擬模型 8
2.1.3 鋰離子電池充電策略 11
2.2 鋰電池充電器概論 15
2.2.1 線性充電器與切換式充電器 15
2.2.2 充電器設計考量 20
第三章 鋰離子電池充電器設計 27
3.1 設計流程 27
3.2 鋰離子電池充電器設計 30
3.2.1 上橋電流感測電路 (Upper-Side Current Sensing Circuit) 32
3.2.2 類電流模式平滑轉換電路(Current-Mode Smooth Transition Circuit) 33
3.2.3 限制最大導通時間電路(A Limited Maximum On-Time Circuit) 35
3.2.4 具漣波抑制之適應性關閉時間控制電路(Ripple Reduction and Adaptive Off-Time Control Circuit) 36
3.2.5 模式選擇電路(Mode Selection Circuit) 38
3.2.6 終止充電電路(End-of-Charging Circuit) 39
3.2.7 充電週期產生電路(Duty Generation Circuit) 40
3.2.8 非重疊相位電路(Nonoverlap Circuit) 41
3.2.9 功率電晶體驅動電路(Driver Circuit) 41
3.3 具前饋輸出電壓時間控制之峰值控制平滑轉換切換式鋰電池充電器 42
3.3.1 具前饋輸出電壓之漣波抑制時間控制電路(Ripple Reduction (Output Voltage Feedforward Time Control Circuit)、軟啟動電路(Soft Start Circuit) 43
3.3.2 模式選擇電路(Mode Selection Circuit) 48
3.3.3 終止充電電路(End-of-Charging Circuit) 49
第四章 鋰電池充電器模擬與量測 51
4.1 鋰電池充電器模擬與量測 51
4.1.1 充電器充電電流與充電電壓模擬與量測 51
4.1.2 電流模式平滑轉換模擬與量測 55
4.1.3 具漣波抑制之適應性關閉時間控制電路模擬與量測 58
4.1.4 充電器晶片佈局、晶片微顯圖與量測環境 59
4.1.6 預計規格、模擬結果、量測結果討論 61
4.2 改善充電時間與截止電流之低電流漣波鋰電池充電器模擬 63
4.2.1 充電器充電電流與充電電壓模擬與量測 63
4.2.2 類電流模式平滑轉換模擬 65
4.2.3 具加速開關頻率之固定關閉時間控制電路模擬 67
4.2.4 改良式終止充電電路、緩啟動電路模擬與量測 69
4.2.5 預計規格、模擬結果討論 71
第五章 結論及未來展望 73
5.1 結論 73
5.2 未來展望 74
References 75
[1] Chenghui Cai, Dong Du, and Zhiyu Liu , “Advanced Traction Rechargeable Battery System for Cableless Mobile Robot,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol.1, pp.234-239, July. 2003

[2] D. Andrea, Battery Management Systems for Large Lithium-Ion Battery Packs. Boston: Artech House, 2010, ch. 1.

[3] D. Linden and T. B. Reddy, Handbook of Batteries. New York:Mc-Graw-Hill, 2002, ch. 35.4

[4] M. Dubarry, N. Vuillaume, and B.Y. Liaw, “From Li-ion single cell model to battery pack simulation” IEEE International Conference on Control Applications, pp.708-713, Sept. 2008

[5] C.-C. Tsai, C.-Y. Lin, Y.-S. Hwang, W.-T. Lee, and T.-Y. Lee, “A multi-mode LDO-based Li–Ion battery charger in 0.35μm CMOS technology,” in Proc. IEEE Asia-Pacific Conf. Circuits Syst., Dec. 2004, vol. 1, pp. 49–52.

[6] L.-R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 1344–1346, Dec. 2004.

[7] J.-J. Chen, F.-C. Yang, C.-C. Lai, Y.-S. Hwang, and R.-G. Lee, “A high efficiency multimode Li-ion battery charger with variable current source and controlling previous stage supply voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469–2478, Jul. 2009.

[8] M. Chen and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li-ion battery charger circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1180–1184, Nov. 2006.

[9] R.-H. Peng, Y.-P. Su, T.-W. Tsai, Y.-P. Chen, K.-H. Chen, M.-J. Du, and S.-H. Cheng, “Robust switch-mode charger with bootstrap detector (BSD) and soft-start embedded in type III compensation (SSEC) technique,” in Proc. 2008 IEEE Energy Conversion Congress and Exposition, Sep. 2008, pp. 33–36.

[10] T. -W. Tsai, R. –H. Peng, Y. –P. Su, Y. –P. Chen, K. –H. Chen, S. –M. Wang, M. –W. Lee, and H. –Y. Luo, “Automatic Power Monitor (APM) in Switching Charger with Smooth Transition Loop Selector (STLS) for High-energy Throughput System”, in Conf. Rec. IEEE ECCE 2012, pp. 3182-3186.

[11] F.-C. Yang, C.-C. Chen, J.-J. Chen, Y.-S. Hwang and W.-T. Lee,“Hysteresis-Current-Controlled Buck Converter Suitable for Li-Ion Battery Charger”, in Proc., IEEE International Conference on Communications, Circuits and Systems (ICCCAS), vol. 4, pp. 2723-2726, Jun. 2006.

[12] S. Jung, Y.-J. Woo, N.-I. Kim, and G.-H. Cho, “Analog-digital switching mixed mode low ripple-high energy Li-ion battery charger,” in Conf. Rec. IEEE IAS Annu. Meeting, Chicago, IL, Oct. 2001, vol. 4, pp. 2473–2477.

[13] Jinrong Qian, and Lingyin Zhao," Circuit Design and Power Loss Analysis of a Synchronous Switching Charger with Integrated MOSFETs for Li-Ion Batteries", Texas Instruments, Topic5

[14] Tzu-Chi Huang, Ruei-Hong Peng, Tsu-Wei Tsai, Ke-Horng Chen, and Chin-Long Wey, “Fast Charging and High Efficiency Switching-Based Charger With Continuous Built-In Resistance Detection and Automatic Energy Deliver Control for Portable Electronics”, IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1580–1594, JULY 2014.

[15] R. Pagano, M. Baker, and R. E. Radke, “A 0.18-μm Monolithic Li-Ion Battery Charger for Wireless Devices Based on Partial Current Sensing and Adaptive Reference Voltage”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 47, NO. 6, JUNE 2012

[16] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 506–517, Feb. 2010.

[17] Texas Instruments, "Closed-Loop Compensation Design of a Synchronous Switching Charger Using bq2472x/3x, " SLUA371, Application Report, September 2006

[18] S.-H. Yang, J. Liu, and C. Wang, “A single-chip 60-V bulk charger for series Li-Ion batteries with smooth charge-mode transition,” IEEE Trans. Circuits Syst. I, Reg. Papers, pp. 1588–1597, Jul. 2012

[19] J.-J. Chen, F.-C. Yang, C.-C. Lai, Y.-S. Hwang, and R.-G. Lee, “A high efficiency multimode Li-ion battery charger with variable current source and controlling previous stage supply voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2469–2478, Jul. 2009

[20] Hong-Yi Yang, Tse-Hsu Wu, Jiann-Jong Chen, Yuh-Shyan Hwang and Cheng-Chieh Yu, “An Omnipotent Li-Ion Battery Charger With Multimode Controlled Techniques”, IEEE 10th international conference on Power Electronics and Drive Systems, pp.531-534, April 2013

[21] S. Guo and H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796–1804, Jun. 2009.

[22] C. F. Lee and P. K. T. Mok, “A monolithic current mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.

[23] Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J. Chen, “New compact CMOS Li-Ion battery charger using charge-pump technique for portable applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, no. 4, pp. 705–712, Apr. 2007.

[24] Tzu-Chi Huang, Ruei-Hong Peng, Tsu-Wei Tsai and Ke-Horng Chen, “Fast Charging and High Efficiency Switching-Based Charger With Continuous Built-In Resistance Detection and Automatic Energy Deliver Control for Portable Electronics” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1580–1594, July. 2014.

[25] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA, USA: Kluwer, 2001.

[26] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, New York, Oxford, USA: Oxford University Press, 2011
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔