(3.215.180.226) 您好!臺灣時間:2021/03/09 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張景翔
研究生(外文):Chang, Ching-Hsiang
論文名稱:探討無機填料/聚丙烯複合材料之機械性質
論文名稱(外文):Investigating Mechanical Properties of Polypropylene with Inorganic Filler
指導教授:蔡佳霖蔡佳霖引用關係
指導教授(外文):Tsai, Jia-Lin
口試委員:葉孟考劉耀先
口試委員(外文):Yeh, Meng-KaoLiu, Yao-Hsien
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:100
中文關鍵詞:聚丙烯複合材料無機填料楊氏模數破壞韌性
外文關鍵詞:Polypropylene compositesInorganic fillerYoung's modulusFracture toughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
  本研究主要目的係探討無機填料含量對聚丙烯複合材料機械性質之影響,兩種無機填料分別為硫酸鎂晶鬚(Magnesium oxysulfate whisker)及矽灰石(Wollastonite),分別以10wt%、20wt%及30wt%的含量與聚丙烯混合,透過掃描式電子顯微鏡(SEM)分析無機填料於聚丙烯之方向性及無機填料之形貌。無機填料對聚丙烯複合材料機械性質影響的探討,包括拉伸實驗及破壞韌性實驗。拉伸實驗結果顯示複合材料之楊氏模數隨著無機填料含量增加而遞增,透過微觀力學模型(Mori-Tanaka model)並考慮無機填料長徑比分布,預估無機填料複合材料之楊氏模數。破壞韌性實驗結果顯示兩種無機填料之複合材料破壞韌性皆於添加10wt%時達到峰值,含量增加逐漸降低,透過掃描式電子顯微鏡分析破壞韌性試片之破壞表面,探討其破壞機制。敲擊實驗藉由力量感測器及雷射位移計分析20wt%硫酸鎂晶鬚/聚丙烯複合材料板承受衝擊之受力及變形情況,觀察其破壞模式,此外,透過有限元素分析軟體LS-DYNA模擬板材之動態行為。
  The study aims to investigate the mechanical properties of polypropylene (ethylene-methacrylic acid copolymers modified) composites containing there different loadings of inorganic fillers, i.e., 10wt%, 20wt% and 30wt%. Two kinds of inorganic fillers were considered, one is magnesium oxysulfate whisker and the other is acicular wollastonite crystal. The morphology of the inorganic filler dispersed within polypropylene was examined through the scanning electron microscope (SEM). The mechanical property of polypropylene composites with inorganic filler, including tensile property and fracture toughness. Tensile testes demonstrated that when the loading of the inorganic filler increases, the moduli of the polypropylene composites increase accordingly. The incremental tendency of the moduli in terms of inorganic filler loading was appropriately characterized using Mori-Tanaka micromechanical model with the consideration of aspect ratio distribution of inorganic filler. From fracture tests it was found that for both composite material systems, the fracture toughness achieves the peak value when the inorganic filler loading is 10wt% and then declines with the increment of the inorganic filler. Based on the SEM observation on the fracture surfaces, the decrement of the fracture toughness could be attributed to the severe aggregation of the inorganic fillers in the composites.
  The magnesium oxysulfate whisker/polypropylene composites plate with the filler loading 20wt% was analyzed by load cell and laser sensor for displacement to investigate the dynamic behavior and the failure mode of the composites. Furthermore, the dynamic behavior of hammer impact test was simulated by finite element software LS-DYNA.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與文獻回顧 1
1.2 研究目標與方法 4
第二章 無機填料/聚丙烯複合材料特性 5
2.1 無機填料 5
2.1.1 無機填料之掃描式電子顯微鏡分析 5
2.2 無機填料/聚丙烯複合材料 6
2.2.1 穿透式電子顯微鏡(TEM)分析 7
2.2.2 無機填料複合材料之掃描式電子顯微鏡分析 7
第三章 複合材料之機械性質 9
3.1 拉伸實驗 9
3.1.1 複合材料拉伸實驗 10
3.1.2 微觀力學模型(Mori-Tanaka model) 12
3.2 破壞韌性實驗 20
3.2.1 無機填料/聚丙烯複合材料破壞韌性實驗 23
3.2.2 掃描式電子顯微鏡(SEM)分析 25
第四章 複合材料板材敲擊實驗與模擬 28
4.1 複合材料板材 28
4.2複合材料板材拉伸實驗 29
4.3 複合材料板材敲擊實驗 30
4.4 敲擊實驗有限元素模擬 31
第五章 結論與未來工作 35
5.1 結論 35
5.2 未來工作 35
參考文獻 37
附錄一 43
附表 52
附圖 66
[1]L. Zhang, C. Li and R. Huang, “Toughness mechanism in polypropylene composites: polypropylene toughened with elastomer and calcium carbonate,” Journal of Polymer Science Part B: Polymer Physics, vol 42, pp. 1656-1662, 2004.

[2]S. N. Maiti and R. Das, “Mechanical properties of impact i-PP/CSM rubber blends,” International Journal of Polymeric Materials, vol. 54, pp. 467-482, 2005.

[3]P. A. Järvelä, and P. K. Järvelä, “Multicomponent compounding of polypropylene,” Journal of Materials Science, vol. 31, pp. 3853-3860, 1996.

[4]H. Salas-Papayanolopos, A. B. Morales, T. Lozano, J. Laria, S. Sanchez, F. Rodriguez, G. Martinez, F. Cerino, “Improvement of toughness properties of polypropylene/wollastonite composites using an interface modifier,” Polymer Composites, vol. 35, pp. 1184-1192, 2014.

[5]U. P. Singh, B. K. Biswas, and B. C. Ray, “Evaluation of mechanical properties of polypropylene filled with wollastonite and silicon rubber,” Materials Science and Engineering: A, vol. 501, pp. 94-98, 2009.

[6]Q. Sun, W. Li, Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications, CRC Press, 2015.

[7]J. Peng, and Y. M. Cao, “Preparation and properties of PA66/PP/MOS whisker composites,” Advanced Materials Research, vol. 311, pp. 20-25, 2011.

[8]H. Lu, Y. Hu, L. Yang, Z. Chen, and W. Fan, “Study of the fire performance of magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene,” Macromolecular Materials and Engineering, vol. 289, pp. 984-989, 2004.

[9]Y. Cao, J. Feng and P. Wu, “Simultaneously improving the toughness, flexural modulus and thermal performance of isotactic polypropylene by α-β crystalline transition and inorganic whisker reinforcement,” Polymer Engineering and Science, vol. 50, pp. 222-231, 2010.

[10]J. Gong, W. Guo, K. Wang, and J. Xiong, “Surface modification of magnesium hydroxide sulfate hydrate whiskers and its toughness and reinforcement for polyvinyl chloride,” Polymer Composites, 2017.

[11]C. Gao, Z. Li, Y. Liu, X. Zhang, J. Wang, and Y. Wu, “Thermal, crystallographic, and mechanical properties of Poly(butylene succinate)/Magnesium hydroxide sulfate hydrate whisker composites modified by in situ polymerization,” Industrial & Engineering Chemistry Research, vol. 56, pp. 3516-3526, 2017.

[12]N. Ning, F. Luo, K. Wang, R. Du, Q. Zhang, F. Chen, and Q. Fu, “Interfacial enhancement by shish–calabash crystal structure in polypropylene/inorganic whisker composites,” Polymer, vol. 50, pp. 385-3856, 2009.

[13]J. L. Thomason, “Micromechanical parameters from macromechanical measurements on glass reinforced polyamide 6, 6,” Composites Science and Technology, vol. 61, pp. 2007-2016, 2001.

[14]ASTM D638, “Standard Test Method for Tensile Properties of Plastics,” ASTM International, West Conshohocken, PA, 2014.

[15]T. Mori, K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta metallurgica, vol. 21, pp. 571-574, 1973.

[16]P. Lu, Y. W. Leong, P. K. Pallathadka, and C. B. He, “Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model–Theory and explicit expressions,” International Journal of Engineering Science,vol 73, pp. 33-55, 2013.

[17]B. N. Nguyen, V. Kunc, B. J. Frame, J. Phelps, C. L. Tucker III, S. K. Bapanapalli, J. D. Holbery, and M. T. Smith, “From process modeling to elastic property prediction for long-fiber injection-molded thermoplastics,” Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2007.

[18]B. N. Nguyen, S. K. Bapanapalli, J. D. Holbery, M. T. Smith, V. Kunc, B. J. Frame, J. Phelps, and C. L. Tucker III, “Fiber length and orientation in long-fiber injection-molded thermoplastics—Part I: Modeling of microstructure and elastic properties,” Journal of composite materials, vol. 42, pp. 1003-1029, 2008.

[19]Y. Ding, G. Zhang, S. Zhang, X. Huang, W. Yu, and Y. Qian, “Preparation and characterization of magnesium hydroxide sulfate hydrate whiskers,” Chemistry of materials, vol. 12, pp. 2845-2852, 2000.

[20]X. Yan, D. Xu, and D. Xue “ ions direct the one-dimensional growth of ,” Acta Materialia, vol. 55, pp. 5747-5757, 2001.

[21]J. Akai, “Direct observation of stacking faults in wollastonite,” Memoirs of the Faculty of Science, Kyoto University. Series of geology and mineralogy , vol. 41, pp. 1-13, 1975.

[22]J. L. Hutchison, and A. C. Mclaren, “Two-dimensional lattice images of stacking disorder in wollastonite,” Contributions to Mineralogy and Petrology, vol. 55, pp. 303-309, 1976.

[23]R. N. Mead and G. Mountjoy, “A molecular dynamics study of densification mechanisms in calcium silicate glasses CaSi2O5 and Ca SiO3 at pressures of 5 and 10 GPa,” The Journal of chemical physics, vol. 125, pp. 154501, 2006.

[24]T. K. Kundu, K. Hanumantha Rao, and S. C. Parker, “Atomistic simulation of the surface structure of wollastonite,” Chemical physics letters, vol. 377, pp. 81-92, 2003.

[25]T. K. Kundu, K. Hanumantha Rao, and S. C. Parker, “Atomistic simulation of the surface structure of wollastonite and adsorption phenomena relevant to flotation,” International Journal of Mineral Processing, vol. 72, pp. 111-127, 2003.

[26]V. Dey, R. Kachala, A. Bonakdar, B. Mobasher, “Mechanical properties of micro and sub-micron wollastonite fibers in cementitious composites,” Construction and Building Materials, vol. 82, pp. 351-359, 2015.

[27]ASTM D6068, “Standard test method for determining J-R curves of plastic materials,” ASTM International, West Conshohocken, PA, 2010.

[28]L. Farhang and R. Bagheri, “Investigation of toughening micro-mechanisms in polypropylene/ethylene-propylene-diene rubber blends at crack and notch tips,” Materials Performance and Characterization, vol. 3, pp. 469-488, 2014.

[29]P. R. Hornsby and K. Premphet, “Fracture toughness of multiphase polypropylene composites containing rubbery and particulate inclusions,” Journal of Materials Science, vol. 32, pp. 4767-4775, 1997.

[30]W. C. J. Zuiderduin, C. Westzaan, J. Huétink, and R. J. Gaymans, “Toughening of polypropylene with calcium carbonate particles,” Polymer, vol. 44, pp. 261-275, 2003.

[31]P. Doshev, R. Lach, G. Lohse, A. Heuvelsland, W. Grellmann, and H. J. Radusch, “Fracture characteristics and deformation behavior of heterophasic ethylene–propylene copolymers as a function of the dispersed phase composition,” Polymer, vol. 46, pp. 9411-9422, 2005.

[32]X. Feng, H. Wang, Y. Shi, D. Chen, and X. Lu, “The effects of the size and content of potassium titanate whiskers on the properties of PTW/PTFE composites,” Materials Science and Engineering: A, vol. 448, pp. 253-258, 2007.

[33]C. M. Koo, J. H. Kim, and I. J. Chung, “Melt-extensional properties and orientation behaviors of polypropylene-layered silicate nanocomposites,” Journal of Polymer Science Part B: Polymer Physics, vol. 43, pp. 158-167, 2005.

[34]P. E. Burke, G. C. Weatherly, and R. T. Woodhams, “Uniaxial roll-drawing of isotactic polypropylene sheet,” Polymer Engineering and Science, vol. 27, pp. 518-523, 1987.

[35]S. H. Tabatabaei, P. J. Carreau, and A. Ajji, “Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation,” Polymer, vol. 50, pp. 4228-4240, 2009.

[36]D. Mi, H. Liu, L. Zhang, T. Wang, X. Zhang, and J. Zhang, “The Changes of Microstructure and Physical Properties of Isotactic Polypropylene/β Nucleation Agent/Polyolefin Elastomer Induced by Annealing Following Processing,” Journal of Macromolecular Science, Part B, vol. 54, pp.1376-1390, 2015.

[37]P. P. Parlevliet, H. E. Bersee, and A. Beukers, “Residual stresses in thermoplastic composites-A study of the literature-Part I: Formation of residual stresses,” Composites Part A: Applied Science and Manufacturing, vol. 37, pp. 1847-1857, 2006.

[38]C. M. Tai, R. K. Li, and C. N. Ng, “Impact behaviour of polypropylene/polyethylene blends,” Polymer Testing, vol. 19, pp.143-154, 2000.

[39]ASTM D792, “Standard test methods for density and specific gravity (relative density) of plastics by displacement,” ASTM International, West Conshohocken, PA, 2013.

[40]S. P. Bao, and S. C. Tjong, “Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: the effects of loading rate and temperature,” Materials Science and Engineering: A, vol. 485, pp.508-516, 2008.

[41]Y. Zhou, and P. K. Mallick, “Effects of temperature and strain rate on the tensile behavior of unfilled and talc-filled polypropylene. Part I: Experiments,” Polymer Engineering and Science, vol. 42, pp. 2449-2460, 2002.

[42]J. Qu, and M. Cherkaoui, Fundamentals of micromechanics of solids, Hoboken: Wiley, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔