跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭炳順
研究生(外文):Peng, Ping-Shun
論文名稱:螢光強度監控雷射捕陷控制溶菌酶的結晶化
論文名稱(外文):Laser trapping-controlled crystallization of lysozyme by monitoring fluorescence intensity
指導教授:杉山輝樹
指導教授(外文):Sugiyama ,Teruki
口試委員:增原宏王建隆許馨云
口試委員(外文):Masuhara, HiroshiWang, Chien-LungHSU, Hsin-Yun
口試日期:2016-11-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:67
中文關鍵詞:溶菌酶螢光強度四甲基羅丹明-5-異硫氰酸酯結晶化
外文關鍵詞:lysozymefluorescence intensitytetramethylrhodamine-5-isothiocyanatecrystallization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用雷射捕陷的方式進而控制溶菌酶的結晶化,藉由監控隨著時間變化的螢光強度。我們運用近紅外光連續波當作雷射捕陷的光源,此光源聚焦於溶菌酶的緩衝溶液中,且此溶液中含有些許的螢光染料標定在溶菌酶上,在高濃度區域中含有溶菌酶團簇,此團簇遠大於聚焦點,可由周圍的雷射焦點的螢光強度增加得知。我們選擇從焦點離10 μm 水平面當作觀測點,此點螢光強度在起始溶液假設為1.0 倍,並觀測隨著時間變化的螢光強度而變化。在雷射照射期間中,不論照射時間多長,沒有發現雷射誘發任何現象,然而關掉雷射後,卻呈現出兩種現象分別是結晶化和液液相分離。這些現象主要依靠達到螢光強度所致,雷射誘發的現象能夠由螢光強度改變而控制。當螢光強度達到1.6倍時,立即停止雷射捕陷,觀察此現象均呈現一致性溶菌酶的結晶化。有趣的是,大部分的結晶密集出現在焦點周圍幾微米地方,由此可推測被誘發溶菌酶結晶是因為雷射捕陷而形成微米大小的高濃度區域所導致。這些現象也需要依賴雷射照射時間與極性甚至當達到一樣的螢光強度。另一個實例中,當螢光強度1.4倍時,雷射照射時會出現兩種情況,分別是沒有任何現象和結晶出現的機率。有趣的是,利用線性偏振的雷射照射時,在長時間照射優先導致結晶化,而右旋圓偏振卻是短時間照射優先導致結晶化。從結果上來說,我們考慮到觀察這些現象取決於不單單在於區域中的叢集濃度以及團簇間連結和方向,而取決於雷射平均照射時間和極性。因此,雷射捕陷的方式足以形成高濃度的溶菌酶叢集區域和能強烈限制叢集的聯結和方向,在焦點1 μm的位置。當停止雷射照射時,雷射所造成限制已消逝,使得在區域中的叢集能重新排列,並觸發結晶成核與液液相分離的現象。我們相信利用雷射捕陷的方式進行結晶化能夠應用各種蛋白質中,且在這次研究中觀察獨特的雷射誘發現象,同時也給予新的視野觀去了解和闡述他們的成核現象的機制。
We present laser trapping-controlled crystallization of hen egg white lysozyme (HEWL) by monitoring temporal change in fluorescence intensity. By applying the laser trapping of a focused near-infrared continuous-wave laser beam into HEWL buffer solution with a small amount of fluorescent dye-labelled HEWL, a highly-concentrated domain consisting of HEWL liquid-like clusters much larger than the laser focus is formed, according to which the fluorescence intensity around the laser focus is gradually increased. We select a point of 10 μm away horizontally from the laser focus as a monitoring point, where the fluorescence intensity of the initial solution is set to be 1.0, and monitor the temporal change in the fluorescence intensity. During the laser irradiation, no laser trapping-induced phenomenon is found even by long-time irradiation, while two kinds of phenomena of its crystallization and liquid-liquid phase separation are realized only after stopping the laser trapping. These phenomena strongly depend on the fluorescence intensity achieved by laser trapping, and trapping-induced phenomena can be controlled by monitoring the fluorescence intensity change. In the case that the laser trapping is stopped when the fluorescence intensity reaches 1.6, HEWL crystallization is consistently observed. Interestingly, the point of crystal generation is densely distributed just in a few millimeters around the focal spot, which supports that HEWL crystal is induced through the formation of a millimeter-sized highly concentrated domain by laser trapping. These phenomena also depend on laser irradiation time and polarization even when the achieved fluorescence intensity is same. In the case that the achieved fluorescence intensity is 1.4, laser irradiation causes nothing and crystallization with a certain probability. Interestingly, linearly-polarized laser irradiation preferentially leads to crystallization by long-term irradiation, while circularly-polarized laser irradiation does by short-term irradiation. Based on this result, we consider that the observed phenomenon is determined not simply by cluster concentration in the domain but also their association and orientation depending on laser average irradiation time and polarization. Thus, laser trapping can form a large highly concentrated domain of HEWL clusters and can strongly restrict the association and orientation of the clusters at the laser focus of about 1 μm. When the restriction is released by stopping laser trapping, the clusters in the domain can align suitable for triggering crystal nucleation and liquid-liquid phase separation. We believe that this crystallization method utilizing laser trapping can be applied to various kinds of proteins and that the unique laser trapping-induced phenomena observed in this work give a new sight to understand and elucidate their nucleation mechanism.
Abstract i
中文摘要 iii
Acknowledgements v
Contents vi
List of Figures viii
Chapter 1 Introduction - 1 -
1.1 Laser trapping - 1 -
1.1.1 History of laser trapping - 1 -
1.1.2 Principle of laser trapping - 2 -
1.2 Laser trapping-induced crystallization of glycine - 5 -
1.3 Classification of laser trapping-induced phenomena - 8 -
1.4 Protein of crystallization - 10 -
1.4.1 Phase diagrams for protein crystallization - 11 -
1.4.2 Protein crystallization through two-step nucleation mechanism - 13 -
1.5 Laser trapping-controlled dense domain formation controlling crystal nucleation of hen egg white lysozyme - 17 -
1.6 Fluorescence microscopic study on large highly concentrated domain of hen egg white lysozyme clusters formed by laser trapping - 19 -
1.7 Laser trapping-controlled crystallization of en egg white lysozyme through its highly concentrated domain formation - 23 -
1.8 Motivation of this research - 24 -
Chapter 2 Experimental - 26 -
2.1 Chemicals - 26 -
2.2 Sample preparation - 27 -
2.3 Optical setup - 29 -
2.4 Definition of apparent crystal shape of HEWL tetragonal crystal - 31 -
Chapter 3 Results and Discussion - 34 -
3.1 Formation of a large dense domain consisting of hen egg white lysozyme liquid-like clusters - 34 -
3.2 Laser trapping-induced phenomena controlled by monitoring fluorescence intensity - 36 -
3.3 Laser trapping-controlled different concentrated domain formation induced phenomena through fluorescence intensity - 39 -
3.4 Laser trapping-controlled different concentrated domain formation induced phenomena through fluorescence intensity depending on laser polarization - 41 -
3.5 Laser irradiation time under various fluorescence intensity dependence - 42 -
3.6 Decay time - 45 -
3.7 Dynamic and mechanism - 47 -
3.8 Summary - 52 -
Chapter 4 Laser trapping-induced crystallization of HEWL depending on laser polarization - 54 -
4.1 Spontaneous nucleation of HEWL in D2O buffer solution - 54 -
4 .2 Laser trapping-induced nucleation of HEWL in D2O buffer solution through formation of a highly concentrated cluster domain - 55 -
4.3 Summary - 62 -
Chapter 5 Conclusion - 63 -
References - 65 -
1.Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).
2.Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).
3.Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290 (1986).
4.Borowicz, P., Hotta, J., Sasaki, K. & Masuhara, H. Laser-controlled association of poly(N-vinylcarbazole) in organic solvents: Radiation pressure effect of a focused near-infrared laser beam. J. Phys. Chem. B 101, 5900-5904 (1997).
5.Hotta, J. I., Sasaki, K. & Masuhara, H. A single droplet formation from swelled micelles by radiation pressure of a focused infrared laser beam. J. Am. Chem. Soc. 118, 11968–11969 (1996).
6.Yuyama, K., Ishiguro, K., Sugiyama, T. & Masuhara, H. Laser trapping dynamics of L-alanine depending on the laser polarization. Proc. SPIE 8458, 84582D–84582D–7 (2012).
7.Sugiyama, T., Adachi, T. & Masuhara, H. Crystallization of glycine by photon pressure of a focused contaneous wave laser beam. Chem. Lett. 36, 1480–1481 (2007).
8.Tu, J. R., Miura, A., Yuyama, K. I., Masuhara, H. & Sugiyama, T. Crystal growth of lysozyme controlled by laser trapping. Cryst. Growth Des. 14, 15–22 (2014).
9.Li, H., Nadarajah, A. & Pusey, M. L. Determining the molecular-growth mechanisms of protein crystal faces by atomic force microscopy. Acta Crystallogr. Sect. D Biol. Crystallogr. 55, 1036–1045 (1999).
10.Onuma, K. & Kanzaki, N. Multi-angle static and dynamic light scattering investigation of lysozyme association: From crystallization to liquid-liquid phase separation. J. Cryst. Growth 304, 452–459 (2007).
11.Tsuboi, Y., Shoji, T., Nishino, M., Masuda, S., Ishimori, K., & Kitamura, N. Optical manipulation of proteins in aqueous solution. Appl. Surf. Sci. 255, 9906–9908 (2009).
12.Rungsimanon, T. Yuyama, K., Sugiyama, T., Masuhara, H., Tohnai, N., & Miyata, M. Control of crystal polymorph of glycine by photon pressure of a focused continuous wave near-infrared laser beam. J. Phys. Chem. Lett. 1, 599–603 (2010).
13.Yuyama, K. I., Rungsimanon, T., Sugiyama, T. & Masuhara, H. Selective fabrication of α- And γ-polymorphs of glycine by intense polarized continuous wave laser beams. Cryst. Growth Des. 12, 2427–2434 (2012).
14.Iitaka, Y. The crystal structure of γ-glycine. Acta Crystallogr. 14, 1–10 (1961).
15.Srinivasan, K. Crystal growth of α--glycine and γ-glycine polymorphs and their polymorphic phase transformations. J. Cryst. Growth 311, 156–162 (2008).
16.Bhat, M. N. & Dharmaprakash, S. M. Effect of solvents on the growth morphology and physical characteristics of nonlinear optical γ-glycine crystals. J. Cryst. Growth 242, 245–252 (2002).
17.Yang, X., Lu, J., Wang, X. J. & Ching, C. B. Effect of sodium chloride on the nucleation and polymorphic transformation of glycine. J. Cryst. Growth 310, 604–611 (2008).
18.Balakrishnan, T., Babu, R. R. & Ramamurthi, K. Growth, structural, optical and thermal properties of γ-glycine crystal. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 69, 1114–1118 (2008).
19.Dawson, A. et al. Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 5, 1415–1427 (2005).
20.He, G., Bhamidi, V., Wilson, S., Tan, R., Paul, J., Kenis, A., & Zukoski, C. Direct growth of γ-glycine from neutral aqueous solutions by slow, evaporation-driven crystallization. Cryst. Growth Des. 6, 1746–1749 (2006).
21.Hofkens, J., Hotta, J., Sasaki, K., Masuhara, H. & Iwai, K. Molecular assembling by the radiation pressure of a focused laser-beam: poly(N-Isopropylacrylamide) in aqueous-solution. Langmuir 13, 414–419 (1997).
22.Hofkens, J., Hotta, J., Sasaki, K., & Masuhara, H. Molecular association by the radiation pressure of a focused laser beam: Fluorescence characterization of pyrene-labeled PNIPAM. J. Am. Chem. Soc. 119, 2741–2742 (1997).
23.Masuo, S., Yoshikawa,H., Asahi,T., & Masuhara,H. Repetitive contraction and swelling behavior of gel-like wire-type dendrimer assemblies in solution layer by photon pressure of a focused near-infrared laser beam. J. Phys. Chem. B 106, 905–909 (2002).
24.Yoshikawa, H., Matsui, T. & Masuhara, H. Reversible assembly of gold nanoparticles confined in an optical microcage. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 70, 061406_1- 061406_6 (2004).
25.Masuhara, H., Sugiyama, T., Yuyama, K. ichi & Usman, A. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers. Opt. Rev. 22, 143–148 (2015).
26.Singer, W., Nieminen, T. A., Gibson, U. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Orientation of optically trapped nonspherical birefringent particles. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 73, 021911_1-021911_5 (2006).
27.Singer, W., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Collecting single molecules with conventional optical tweezers. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 011916_1-011916_5 (2007).
28.Tsuboi, Y., Shoji, T. & Kitamura, N. Optical Trapping of Amino Acids in Aqueous Solutions. J. Phys. Chem. C 114, 5589-5593 (2010).
29.Masuo, S., Yoshikawa, H., Nothofer, H., Grimsdale, A., Scherf, U., Mullen, K., & Masuhara, H. Assembling and orientation of polyfluorenes in solution controlled by a focused near-infrared laser beam. J. Phys. Chem. B 109, 6917–6921 (2005).
30.Usman, A., Uwada, T. & Masuhara, H. Optical reorientation and trapping of nematic liquid crystals leading to the formation of micrometer-sized domain. J. Phys. Chem. C 115, 11906–11913 (2011).
31.Masuhara, H. et al. Laser-trapping assembling dynamics of molecules and proteins at surface and interface. Pure Appl. Chem. 83, 869-883 (2011).
32.Doye, J. P. K. & Poon, W. C. K. Protein crystallization in vivo. Curr. Opin. Colloid Interface Sci. 11, 40–46 (2006).
33.Saridakis, E. E. G., Stewart, P. D. S., Lloyd, L. F. & Blow, D. M. Phase diagram and dilution experiments in the crystallization of carboxypeptidase G2. Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 293–297 (1994).
34.Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).
35.ten Wolde, P. R., Frenkel, D. & Wolde, P. R. T. Enhancement of protein crystal nucleation by critical density fluctuations. Science. 277, 1975–1978 (1997).
36.Chattopadhyay, S., Erdemir, D., Evans, J., Ilavsky, J., Amenitsch, H. Segre,U., & Myerson A. SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst. Growth Des. 5, 523–527 (2005).
37.Gliko, O., Pan, W., Katsonis, P., Neumaier, N., Galkin, O., Weinkauf, S., & Vekilov, P. Metastable liquid clusters in super- and undersaturated protein solutions. J. Phys. Chem. B 111, 3106–3114 (2007).
38.Matsui, T., Sazaki, G., Hondoh, H., Matsuura, Y., Nakada,T., & Nakajima, K. Impurity effects of lysozyme molecules specifically labeled with a fluorescent reagent on the crystallization of tetragonal and monoclinic lysozyme crystals. J. Cryst. Growth 293, 415–422 (2006).
39.Durbin, S. D. & Feher, G. Crystal growth studies of lysozyme as a model for protein crystallization. J. Cryst. Growth 76, 583–592 (1986).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top